首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The intestinal fatty acid binding protein contains two tryptophan residues (Trp6 and Trp82) both of which have been shown by X-ray and NMR methods to be buried in hydrophobic clusters. By using a combination of steady-state and time-resolved fluorescence experiments, we have deconvoluted the lifetime weighted contribution of each of the tryptophans to the steady-state fluorescence quantum yield. While Trp82 has been implicated in an intermediate that appears at relatively high denaturant concentrations, the variation of the lifetime weighted contribution of Trp6 with urea or guanidium hydrochloride shows formation of an intermediate state at low concentrations of the denaturant before the actual unfolding starts. Trp82 did not show similar behavior. Fluorescence quenching experiments by acrylamide show that while Trp6 in the native protein is less solvent-exposed, its accessibility is increased significantly at low urea concentration indicating that the early intermediate state is partially unfolded. Time-resolved anisotropy experiments indicate that the volume of the partially unfolded intermediates is larger than the native protein and lead to the speculation that the last step of the protein folding might be the removal of solvent molecules from the protein.  相似文献   

2.
The environment of Trp residues of the recombinant human interferons has been studied by the analysis of the emission spectra of native and denatured proteins at pH 1.5-8.5 and temperature 10-65 degrees C in the presence and absence of the anionic, cationic and neutral to charge contact quenchers--KI, CsCl and acrylamide, respectively. The obtained data allow to suppose that in IFN-alpha A and IFN-beta 1 Trp141 interacts with Arg145 and one or several from the following residues--Phe124, Ile127, Tyr130, Leu131, whereas Trp77--with Arg33 and Phe36, Phe78, Leu81 or Leu82 (Ile81 or Val82 for IFN-beta 1).  相似文献   

3.
4.
Sridevi K  Udgaonkar JB 《Biochemistry》2003,42(6):1551-1563
The denaturant-induced unfolding kinetics of the 89-residue protein, barstar, have been examined using fluorescence resonance energy transfer (FRET) at 25 degrees C and pH 8.0. The core tryptophan, Trp53, in barstar serves as a fluorescence donor, and a thionitrobenzoic acid moiety (TNB) attached to a cysteine residue acts as an acceptor to form an efficient FRET pair. Four different single-cysteine containing mutants of barstar with cysteine residues at positions 25, 40, 62, and 82 were studied. The unfolding kinetics of the four mutant forms of barstar were monitored by measurement of the changes in the fluorescence intensity of Trp53 in the unlabeled and TNB-labeled proteins. The rate of change of fluorescence of the single-tryptophan residue, Trp53, in the unlabeled protein, where no FRET occurs, yields the rate of solvation of the core. This rate is similar for all four unlabeled proteins. The rate of the increase in the fluorescence of Trp53 in the labeled protein, where FRET from the tryptophan to the TNB label occurs, yields the rate of decrease in FRET efficiency during unfolding. The decrease in FRET efficiency for proteins labeled at either of the two buried positions (Cys40 or Cys82) occurs at a rate similar to the rate of core solvation. The decrease in FRET efficiency for the acceptor at Cys40 is also shown to be sensitive to the isomerization of the Tyr47-Pro48 cis bond. For the proteins where the label is at a solvent-exposed position (Cys25 and Cys62), the decrease in FRET efficiency occurs in two kinetic phases; 15-25% of the FRET efficiency decreases in the faster phase, and the remaining FRET efficiency decreases in a slower phase, the rate of which is the same as the rate of core solvation. These results clearly indicate that, during unfolding, the protein surface expands faster than, and independently of, water intrusion into the core.  相似文献   

5.
Dusa A  Kaylor J  Edridge S  Bodner N  Hong DP  Fink AL 《Biochemistry》2006,45(8):2752-2760
The aggregation of the presynaptic protein alpha-synuclein is associated with Parkinson's disease (PD). The details of the mechanism of aggregation, as well as the cytotoxic species, are currently not well understood. alpha-Synuclein has four tyrosine and no tryptophan residues. We introduced a tyrosine to tryptophan mutation at position 39 to create an intrinsic fluorescence probe and allow additional characterization of the aggregation process. Y39W alpha-synuclein had similar fibrillation kinetics (2-fold slower), pH-induced conformational changes, and fibril morphology to wild-type alpha-synuclein. In addition to intrinsic Trp fluorescence, acrylamide quenching, fluorescence anisotropy, ANS binding, dynamic light scattering, and FTIR were employed to monitor the kinetics of aggregation. These biophysical probes revealed the significant population of two classes of oligomeric intermediates, one formed during the lag period of fibrillation and the other present at the completion of fibrillation. As expected for a natively unfolded protein, Trp 39 was highly solvent-exposed in the monomer and is solvent-exposed in the two oligomeric intermediates; however, it is partially, but not fully, buried in the fibrils. These observations demonstrate the utility of Trp fluorescence labeled alpha-synuclein and demonstrate the existence of an oligomeric intermediate that exists as a transient reservoir of alpha-synuclein for fibrillation.  相似文献   

6.
Selective modification of the two Trp residues of GTP:AMP phosphotransferase from beef heart mitochondria (Mr 26 000; MgGTP + AMP in equilibrium MgGDP + ADP) has been attained by treatment of the enzyme with N-bromosuccinimide at pH 4.0. Almost complete loss of activity is observed when one Trp is oxidized. Fluorescence emission spectra (lambda exc 295 nm) were recorded over the pH range 1.9-12.2. Quenching constants, K, with acrylamide were 4.9, 3.4, 3.1, 2.4, 9.2 and 9.4 M-1 at respective pH values of 11.1, 7.5, 5.5, 4.0, 1.9 and 7.5 with 6 M guanidine/HCl. Over the pH range 8.0-5.5 the fluorescence peak has a constant height with maximum at 333-334 nm, which can be segregated by acrylamide quenching into a peak with maximum at 338 nm and another with maximum at 330 nm. Dropping the pH from 5.5 to 4.0 results in the fluorescence at 338 nm decreasing to 335 nm (indicative of less exposure of the Trp) while that at 330 nm remains constant. Thus the limitation of reactivity to N-bromosuccinimide to pH 4.0 or lower cannot be accounted for by increased exposure of the Trp residues but rather must be explained by a change in the microenvironment of each Trp. As shown by K values above, at pH 2.0 Trp residues are exposed to the solvent, as in the case of treatment with 6 M guanidine hydrochloride. In raising the pH from 8.0 to 12.0 a number of changes occur: (a) the lambda max of emission shifts from 333-334 nm to 343 nm; (b) residue(s) become(s) more available to acrylamide quenching; (c) fluorescence decreases and enzymatic activity increases, both with a midpoint at about 10.6; (d) absorption difference spectra show a maximum at 295 nm typical of Tyr ionization. These data are consistent with conformational change as the pH becomes more alkaline making the Trp residue(s) more exposed to the solvent and/or to non-radiative energy transfer to tyrosinate.  相似文献   

7.
Bothopstoxin-I (BthTX-I) is a homodimeric Lys49-PLA2 homologue from the venom of Bothrops jararacussu in which a single Trp77 residue is located at the dimer interface. Intrinsic tryptophan fluorescence emission (ITFE) quenching by iodide and acrylamide has confirmed that a dimer to monomer transition occurs on reducing the pH from 7.0 to 5.0. Both the monomer and the dimer showed an excitation wavelength-dependent increase in the fluorescence emission maximum, however the excitation curve of the dimer was blue-shifted with respect to the monomeric form. No differences in the absorption or circular dichroism spectra between pH 5.0 and 7.0 were observed, suggesting that this curve shift is due neither to altered electronic ground states nor to exciton coupling of the Trp residues. We suggest that fluorescence resonance energy homotransfer between Trp77 residues at the BthTX-I dimer interface results in excitation of an acceptor Trp population which demonstrates a red-shifted fluorescence emission.  相似文献   

8.
The electron transfer complex between bovine cytochrome c oxidase and horse cytochrome c has been predicted with the docking program DOT, which performs a complete, systematic search over all six rotational and translational degrees of freedom. Energies for over 36 billion configurations were calculated, providing a free-energy landscape showing guidance of positively charged cytochrome c to the negative region on the cytochrome c oxidase surface formed by subunit II. In a representative configuration, the solvent-exposed cytochrome c heme edge is within 4 A of the indole ring of subunit II residue Trp(104), indicating a likely electron transfer path. These two groups are surrounded by a small, hydrophobic contact region, which is surrounded by electrostatically complementary hydrophilic interactions. Cytochrome c/cytochrome c oxidase interactions of Lys(13) with Asp(119) and Lys(72) with Gln(103) and Asp(158) are the most critical polar interactions due to their proximity to the hydrophobic region and exclusion from bulk solvent. The predicted complex matches previous mutagenesis, binding, and time-resolved kinetics studies that implicate Trp(104) in electron transfer and show the importance of specific charged residues to protein affinity. Electrostatic forces not only enhance long range protein/protein association; they also predominate in short range alignment, creating the transient interaction needed for rapid turnover.  相似文献   

9.
The contribution of solvent-exposed charged residues to protein stability was evaluated using ubiquitin as a model protein. We combined site-directed mutagenesis and specific chemical modifications to first replace all Arg residues with Lys, followed by carbomylation of Lys-amino groups. Under the conditions in which all carboxylic groups are protonated (at pH 2), the chemically modified protein is folded and very stable (DeltaG = 18 kJ/mol). These results indicate that surface charge-charge interactions are not an essential fundamental force for protein folding and stability.  相似文献   

10.
用化学修饰、内源荧光和荧光淬灭等方法研究了油麻藤凝集素(MSL)的溶液构象变化和微环境的构象特征。研究发现MSL分子中总共有9个色氨酸(Trp)残基,它们的荧光能被丙烯酰胺淬灭,但不易为KI接近而淬灭,MSL经N-溴代琥珀酰亚胺(NBS)修饰后,其内源性荧光发射谱发生相应变化,结果表明MSL分子中部分Trp残基埋藏于分子内部,而位于分子表面的Trp残基可能处于分子的疏水袋中。  相似文献   

11.
Huang CY  Balakrishnan G  Spiro TG 《Biochemistry》2005,44(48):15734-15742
Early events in the unfolding of apomyoglobin are studied with time-resolved ultraviolet resonance Raman (UVRR) spectroscopy coupled to a laser-induced temperature jump (T-jump). The UVRR spectra provide simultaneous probes of the aromatic side-chain environment and the amide backbone conformation. The amide bands reveal helix melting, with relaxation times of 70 and 16 micros at pH 5.5 and 4, respectively, in reasonable agreement with previously reported amide I' FTIR/T-jump relaxations (132 and 14 micros at pD 5.5 and 3). The acceleration at pH 4 is consistent with destabilization of the hydrophobic AGH core of the protein via protonation of a pair of buried histidines. The same relaxation times are found for intensity loss by the phenylalanine F12 band, signaling solvent exposure of the phenyl rings. There are seven Phe residues, distributed throughout the protein; they produce a global response, parallel to helix melting. Relaxation of the tryptophan W16 intensity also parallels helix melting at pH 5.5 but is twice as fast, 7 micros, at pH 4. The pH 5.5 signal arises from Trp 7, which is partially solvent-exposed, while the pH 4 signal arises from the buried Trp 14. Thus, Trp 14 is exposed to the solvent prior to helix melting of the AGH core, suggesting initial displacement of the A helix, upon which Trp 14 resides. All of the UVRR signals show a prompt response, within the instrument resolution (approximately 60 ns), which accounts for half of the total relaxation amplitude. This response is attributed to solvent penetration into the protein, possibly convoluted with melting of hydrated helix segments.  相似文献   

12.
Time-resolved and steady-state fluorescence have been used to resolve the heterogeneous emission of single-tryptophan-containing mutants of Trp repressors W19F and W99F into components. Using iodide as the quencher, the fluorescence-quenching-resolved spectra (FQRS) have been obtained The FQRS method shows that the fluorescence emission of Trp99 can be resolved into two component spectra characterized by maxima of fluorescence emission at 338 and 328 nm. The redder component is exposed to the solvent and participates in about 21% of the total fluorescence emission of TrpR W19F. The second component is inacessible to iodide, but is quenched by acrylamide. The tryptophan residue 19 present in TrpR W99F can be resolved into two component spectra using the FQRS method and iodide as a quencher. Both components of Trp19 exhibit similar maxima of emission at 322–324 nm and both are quenchable by iodide. The component more quenchable by iodide participates in about 38% of the total TrpR W99F emission. The fluorescence lifetime measurements as a function of iodide concentration support the existence of two classes of Trp99 and Trp19 in the Trp repressor. Our results suggest that the Trp aporepressor can exist in the ground state in two distinct conformational states which differ in the microenvironment of the Trp residues.Abbreviations TrpR tryptophan aporepressor fromE. coli - TrpR W19F TrpR mutant with phenylalanine substituted for tryptophan at position 19 - TrpR W99F TrpR mutant with phenylalanine substituted for tryptophan at position 99 - FQRS fluorescence-quenching-resolved spectra - FPLC fast protein liquid chromatography  相似文献   

13.
S Ghosh  A Misra  A Ozarowski  C Stuart  A H Maki 《Biochemistry》2001,40(49):15024-15030
The phosphorescence and zero field optically detected magnetic resonance (ODMR) of the tryptophan (Trp) residues of alkaline phosphatase from Escherechia coli are examined. Each Trp is resolved optically and identified with the aid of the W220Y mutant and the terbium complex of the apoenzyme. Trp(109), known from earlier work to be the source of room-temperature phosphorescence (RTP), emits a highly resolved low-temperature phosphorescence (LTP) spectrum and has the narrowest ODMR bands observed thus far from any protein site, revealing a uniquely homogeneous local environment. The decay kinetics of Trp(109) at 1.2 K reveals that the major triplet population (70%) undergoes inefficient crystallike spin-lattice relaxation by direct interaction with lattice phonons, the remainder being relaxed efficiently by local disorder modes. The latter population is smaller than is typical for protein sites, suggesting an unusual degree of local rigidity and order consistent with the long-lived RTP. Trp(220) emits a broader LTP spectrum originating to the blue of Trp(109). It has typically broad ODMR bands consistent with local heterogeneity. The LTP of Trp(268) has an ill-defined origin blue shifted relative to Trp(220) and ODMR frequencies consistent with a greater degree of solvent exposure. Trp(268) has noticeable dispersion of its decay kinetics, consistent with quenching at the triplet level by a nearby disulfide residue.  相似文献   

14.
Tryptophan (Trp) fluorescence of two phospholipases A2 (PLA2) from Naja naja atra and Naja nigricollis snake venoms was quenched by acrylamide and iodide. Trp residues in N. naja atra PLA2 were equally accessible to acrylamide and iodide. Iodide quenching studies indicate that there are two classes of Trp fluorophores in N. nigricollis CMS-9. The accessible class consists of Trp-18 and Trp-19. Removal of the N-terminal octapeptide caused a perturbation of the micro-environment of the Trp residues in the PLA2 enzymes. The presence of a substrate lowers the susceptibility of the Trp residues to iodide quenching in N. naja atra PLA2, suggesting that all three Trp residues are at the substrate binding site, but in N. nigricollis CMS-9 Trp-18 and Trp-19 are related to substrate binding.  相似文献   

15.
The steady-state and time-resolved fluorescence properties of two zinc-saturated 18-residue synthetic peptides with the amino acid sequence of the NH2-terminal (NCp7 13-30 F16W, where the naturally occurring Phe was replaced by a Trp residue) and the COOH-terminal (NCp7 34-51) zinc finger domains of human immunodeficiency virus type I nucleocapsid protein were investigated. Fluorescence intensity decay of both Trp 16 and Trp 37 residues suggested the existence of two fully solvent-exposed ground-state classes governed by a C = 2.2 equilibrium constant. The lifetimes of Trp 16 classes differed from those of Trp 37 essentially because of differences in nonradiative rate constants. Arrhenius plots of the temperature-dependent nonradiative rate constants suggested that the fluorescence quenchers involved in both classes and in both peptides were different and the collisional rate of these quenchers with the indole ring was very low, probably because of the highly constrained peptide chain conformation. The nature of the ground-state classes was discussed in relation to 1H nuclear magnetic resonance data. Using Trp fluorescence to monitor the interaction of both peptides with tRNA(Phe) we found that a stacking between the indole ring of both Trp residues and the bases of tRNA(Phe) occurred. This stacking constituted the main driving force of the interaction and modified the tRNA(Phe) conformation. Moreover, the binding of both fingers to tRNA(Phe) was noncooperative with similar site size (3 nucleotide residues/peptide), but the affinity of the NH2-terminal finger domain (K = 1.3 (+/- 0.2) 10(5) M-1) in low ionic strength buffer was one order of magnitude larger than the COOH-terminal one due to additional electrostatic interactions involving Lys 14 and/or Arg 29 residues.  相似文献   

16.
Y H Huang  C W Luo  L C Yu  S T Chu    Y H Chen 《Biophysical journal》1995,69(5):2084-2089
The protein conformation of a mouse seminal vesicle autoantigen was studied by circular dichroism spectroscopy. At pH 7.4, the spectrum in the UV region appears as one negative band at 217 nm and one positive band at 200 nm. This together with the predicted secondary structures indicates no helices but a mixture of beta form, beta turn, and unordered form in the protein molecule. The conformation is stable even at pH 10.5 or 3.0. The spectrum in the near-UV region consists of fine structures that are disturbed in acidic or alkaline solution. The environments around Trp2 and Trp82 of this protein were studied by intrinsic fluorescence and solute quenching. They give an emission peak at 345 nm, and about 87% of them are accessible to quenching by acrylamide. Correlating the quenching effect of CsCl and Kl on the protein fluorescence to the charged groups along the polypeptide chain suggests the difference in the "local charge" around the two tryptophan residues. The presence of ZnCl2 in the protein solution effects no change in the circular dichroism but perturbs the fluorescence due to Trp82. Analysis of the fluorescence data suggests a Zn(2+)-binding site on the protein, which cannot coordinate with both Ca2+ and Mg2+. The association constant for the complex formation is 1.35 x 10(5) +/- 0.04 x 10(5) M-1 at pH 7.4.  相似文献   

17.
The acidic, partly folded states of bovine carbonic anhydrase II (BCAII) were used as an experimental system to study the interactions of partly denatured proteins with lipid membranes. The pH dependence of their interactions with palmitoyloleoyl phosphatidylcholine (POPC) and palmitoyloleoyl phosphatidylglycerol (POPG) membranes was studied. A filtration binding assay shows that acidic partly folded states of BCAII bind to POPC membranes. Fluorescence emission spectra from Trp residues of the bound protein are slightly shifted to shorter wavelength and can be quenched by a water-soluble quencher of fluorescence, indicating that the binding occurs without deep penetration of Trp residues into the membrane. The content of beta-structures of the protein in solution, as revealed by FT-IR spectroscopy, decreases in the partly folded states and the binding to POPC membrane occurs without further changes of secondary structure. In the presence of 0.1 M NaCl, a partly folded state self-aggregates and does not bind to POPC membrane. At acidic pH, BCAII binds to POPG membranes both at high and low ionic strength. The binding to the anionic lipid occurs with protein self-aggregation within the lipid-protein complexes and with changes in the secondary structure; large blue shifts in the fluorescence emission spectra and the decrease in the exposure to water-soluble acrylamide quencher of Trp fluorescence strongly suggest that BCAII penetrates the hydrocarbon domain in the POPG-protein complexes.  相似文献   

18.
Molecular interactions between mesenchymal-derived Keratinocyte growth factor (KGF) and Kit ligand (KITLG) are essential for follicular development. These factors are expressed by theca and granulosa cells. We determined full length coding sequence of buffalo KGF and KITLG proteins having 194 and 274 amino acids, respectively. The recombinant KGF and KITLG proteins were solubilized in 10 mM Tris, pH 7.5 and 50 mM Tris, pH 7.4 and purified using Ni-NTA column and GST affinity chromatography, respectively. The purity and molecular weight of His-KGF (~23 kDa) and GST-KITLG (~57 kDa) proteins were confirmed by SDS-PAGE and western blotting. The co-immunoprecipitation assay accompanied with computational analysis demonstrated the interaction between KGF and KITLG proteins. We deduced 3D structures of the candidate proteins and assessed their binding based on protein docking. In the process, KGF specific residues, Lys123, Glu135, Lys140, Lys155 and Trp156 and KITLG specific ones, Ser226, Phe233, Gly234, Ala235, Phe236, Trp238 and Lys239 involved in the formation of KGF-KITLG complex were detected. The hydrophobic interactions surrounding KGF-KITLG complex affirmed their binding affinity and stability to the interacting interface. Additionally, in-silico site directed mutagenesis enabled the assessment of changes that occurred in the binding energies of mutated KGF-KITLG protein complex. Our results demonstrate that in the presence of KITLG, KGF mimics its native binding mode suggesting all the KGF residues are specific to their binding complex. This study provides an insight on the critical amino acid residues participating in buffalo ovarian folliculogenesis.  相似文献   

19.
The human multidrug resistance protein MRP1 (or ABCC1) is one of the most important members of the large ABC transporter family, in terms of both its biological (tissue defense) and pharmacological functions. Many studies have investigated the function of MRP1, but structural data remain scarce for this protein. We investigated the structure and dynamics of predicted transmembrane fragment 17 (TM17, from Ala(1227) to Ser(1251)), which contains a single Trp residue (W(1246)) involved in MRP1 substrate specificity and transport function. We synthesized TM17 and a modified peptide in which Ala(1227) was replaced by a charged Lys residue. Both peptides were readily solubilized in dodecylmaltoside (DM) or dodecylphosphocholine (DPC) micelles, as membrane mimics. The interaction of these peptides with DM or DPC micelles was studied by steady-state and time-resolved Trp fluorescence spectroscopy, including experiments in which Trp was quenched by acrylamide or by two brominated analogs of DM. The secondary structure of these peptides was determined by circular dichroism. Overall, the results obtained indicated significant structuring ( approximately 50% alpha-helix) of TM17 in the presence of either DM or DPC micelles as compared to buffer. A main interfacial location of TM17 is proposed, based on significant accessibility of Trp(1246) to brominated alkyl chains of DM and/or acrylamide. The comparison of various fluorescence parameters including lambda(max), lifetime distributions and Trp rotational mobility with those determined for model fluorescent transmembrane helices in the same detergents is also consistent with the interfacial location of TM17. We therefore suggest that TM17 intrinsic properties may be insufficient for its transmembrane insertion as proposed by the MRP1 consensus topological model. This insertion may also be controlled by additional constraints such as interactions with other TM domains and its position in the protein sequence. The particular pattern of behavior of this predicted transmembrane peptide may be the hallmark of a fragment involved in substrate transport.  相似文献   

20.
A model for the complex between E. coli RNase HI and the DNA/RNA hybrid (previously refined by molecular dynamics simulations) was used to determine the impact of the internucleotide linkage modifications (either 3-O-CH2-P-O-5' or 3-O-P-CH2-O-5) on the ability of the modified-DNA/RNA hybrid to create a complex with the protein. Modified internucleotide linkages were incorporated systematically at different positions close to the 3-end of the DNA strand to interfere with the DNA binding site of RNase H. Altogether, six trajectories were produced (length 1.5ns). Mutual hydrogen bonds connecting both strands of the nucleic acids hybrid, DNA with RNase H, RNA with RNase H, and the scissile bond with the Mg++. 4H2O chelate complex (bound in the active site) were analyzed in detaiL Many residues were involved in binding of the DNA (Arg88, Asn84, Trp85, Trp104, Tyr73, Lys99, Asn100, Thr43, and Asn 16) and RNA (Gln76, Gln72, Tyr73, Lys122, Glu48, Asn44, and Cys13) strand to the substrate-binding site of the RNase H enzyme. The most remarkable disturbance of the hydrogen bonding net was observed for structures with modified internucleotide linkages positioned in a way to interact with the Trp104, Tyr73, Lys99, and Asn100 residues (situated in the middle of the DNA binding site, where a cluster of Trp residues forms a rigid core of the protein structure).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号