首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cold shock proteins are evolutionarily conserved nucleic acid-binding proteins. Their eukaryotic homologs are present as cold shock domain (CSD) in Y-box proteins. CSDs too share striking similarity among different organisms and show nucleic acid binding properties. The purpose of the study was to investigate the preferential binding affinity of CSD protein for nucleic acids in Philosamia ricini. We have cloned and sequenced the first cDNA coding for Y-box protein in P. ricini; the sequence has been deposited in GenBank. Comparative genomics and phylogenetic analytics further confirmed that the deduced amino acid sequence belongs to the CSD protein family. A comparative study employing molecular docking was performed with P. ricini CSD, human CSD, and bacterial cold shock protein with a range of nucleic acid entities. The results indicate that CSD per se exhibits preferential binding affinity for single-stranded RNA and DNA. Possibly, the flanking N- and C-terminal domains are additionally involved in interactions with dsDNA or in conferring extra stability to CSD for improved binding.  相似文献   

2.
Proteins interacting with the biological information molecules DNA and RNA play important cellular roles in all organisms. One widespread super family of proteins implicated in such function(s) is cold shock protein (CSP) that contains the cold shock domain (CSD). This work is planned to study the three-dimensional structure, conserved residues, and different active sites in the structure of cold resistant protein (CRP) from CRPF1, cold tolerant mutant of Pseudomonas fluorescence by comparative homology modeling. Here we tried to identify crucial residues that are involved in active sites or functional sites of the protein. The study reveals that CRP represent the prototype of the CSD and share a highly similar overall fold consisting of five antiparallel β-sheets forming a β-barrel structure with surface exposed aromatic and basic residues that were responsible for nucleic acid binding properties of variable binding affinities and sequence selectivity and harbors the nucleic acid binding motifs RNP1 and RNP2 that is highly conserved in CSP family.  相似文献   

3.
Cold shock proteins (CSPs) are ancient nucleic acid-binding proteins and well conserved from bacteria to animals as well as plants. In prokaryotes, CSPs possess a single cold shock domain (CSD) while animal CSPs, flanked by N- and C-terminal domains, are commonly named Y-box proteins. Interestingly, the plants CSPs contain auxiliary C-terminal domains in addition to their N-terminal CSD. The CSPs have been shown to play important role in development and stress adaptation in various plant species. The objective of this study was to find out the possible nucleic acid-binding affinities of whole CSP as well as independent domains, so that role of each individual domain may be revealed in Arabidopsis thaliana, the model plant species. The structure of CSP 3 protein from A. thaliana was modeled by homology-based approach and docking was done with different nucleic acid types.  相似文献   

4.
The three-dimensional structure of the homodimeric single-stranded DNA binding protein encoded by the filamentous Pseudomonas bacteriophage Pf3 has been determined using heteronuclear multidimensional NMR techniques and restrained molecular dynamics. NMR experiments and structure calculations have been performed on a mutant protein (Phe36 --> His) that was successfully designed to reduce the tendency of the protein to aggregate. The protein monomer is composed of a five-stranded antiparallel beta-sheet from which two beta-hairpins and a large loop protrude. The structure is compared with the single-stranded DNA binding protein encoded by the filamentous Escherichia coli phage Ff, a protein with a similar biological function and DNA binding properties, yet quite different amino acid sequence, and with the major cold shock protein of Escherichia coli, a single-stranded DNA binding protein with an entirely different sequence, biological function and binding characteristics. The amino acid sequence of the latter is highly homologous to the nucleic acid binding domain (i.e. the cold shock domain) of proteins belonging to the Y-box family. Despite their differences in amino acid sequence and function, the folds of the three proteins are remarkably similar, suggesting that this is a preferred folding pattern shared by many single-stranded DNA binding proteins.  相似文献   

5.
6.
7.
The Y-box proteins are the most evolutionarily conserved nucleic acid binding proteins yet defined in bacteria, plants and animals. The central nucleic acid binding domain of the vertebrate proteins is 43% identical to a 70-amino-acid-long protein (CS7.4) from E. coli. The structure of this domain consists of an antiparallel fivestranded β-barrel that recognizes both DNA and RNA. The diverse biological roles of these Y-box proteins range from the control of the E. coli cold-shock stress response to the translational masking of messenger RNA in vertebrate gametes. This review discusses the organization of the prokaryotic and eukaryotic Y-box proteins, how they interact with nucleic acids, and their biological roles, both proven and potential.  相似文献   

8.
Cold shock proteins (CSPs) have a widespread occurrence from prokaryotes to eukaryotes including plants. These proteins are known to possess nucleic acid binding properties. CSPs have a single cold shock domain in prokaryotes while N-terminal and C-terminal flanking regions are present in eukaryotic CSPs. The objective of this study was to investigate nucleic acid binding preferential for the chickpea CSP. Full cDNA of chickpea CSP was cloned and sequenced. The sequence was submitted to GenBank (accession no. KM036036) at NCBI. Multiple sequence alignment and phylogenetic analysis further revealed that the inferred amino acid sequence belongs to CSP family. Molecular docking was performed between the CSP and variety of nucleic acids entities. These results suggest that CSPs of chickpea possess preferential binding affinity for single stranded nucleic acids. Docking results suggest that homo-polymer entities of RNA polyU RNA (20mer) form most stable complex.  相似文献   

9.
10.
11.
12.
Biochemistry (Moscow) - Y-box binding protein 1 is a member of the cold shock domain (CSD) protein family and one of the most studied proteins associated with a large number of human diseases. This...  相似文献   

13.
Y-box结合蛋白功能及对肿瘤发生的影响   总被引:2,自引:0,他引:2  
张玮玮  黄惠芳  李庆伟  马飞 《遗传》2006,28(9):1153-1160
Y-box结合蛋白家族成员是一类高度保守的顺式作用元件, 广泛存在于原核及真核生物细胞中。它是一种多功能蛋白, 与转录调节、翻译调控、mRNA选择性剪接、DNA的修复、细胞增殖和再生等有关。Y-box结合蛋白的氨基酸序列包含3个结构域: 氨基酸N末端, 亲水结构域C末端, 冷休克结构域(cold shock domain CSD), 保守的冷休克结构域决定了Y-box结合蛋白的大部分功能。最近研究发现, 定位于细胞核中的YB-1蛋白在局部晚期非小细胞肺癌的预防上可作为新的靶位点, YB-1蛋白还可通过对抑癌基因p53启动子抑制起负调控作用, 此外, YB-1蛋白在PI3K/Akt信号通路中也起到重要的作用, 这些研究都为肿瘤的治疗提供了新的线索和启示。文章就Y-box结合蛋白功能及其对肿瘤发生的影响等方面进行概述。  相似文献   

14.
The Y-box proteins are a family of highly conserved nucleic acid binding proteins which are conserved from bacteria to human. In this report we have identified a new member of this family from Drosophila melanogaster. Degenerate-PCR was used to identify a conserved region within the highly conserved cold-shock domain (CSD) of Y-box proteins. Subsequently, the cDNA for this gene was sequenced, and the identified open reading frame was named ypsilon schachtel (yps). The expression pattern of yps indicates that this gene is expressed throughout development with the highest level of expression found in adult flies. In situ hybridization shows that the yps mRNA is maternally loaded into the egg cytoplasm. In addition, there appears to be expression of yps mRNA in mesodermal tissue during embryogenesis. YPS, while containing a conserved CSD, is novel in that it completely lacks the alternating acidic and basic regions found in the C-terminus of the other vertebrate eukaryotic Y-box proteins. The CSD of yps was purified and gel-shift analysis showed that this domain can interact with RNA. We predict that YPS would be an RNA-binding protein due to these results and the motifs which have been identified within the amino acid sequence.  相似文献   

15.
16.
The cold shock response in bacteria involves the expression of low-molecular weight cold shock proteins (CSPs) containing a nucleic acid-binding cold shock domain (CSD), which are known to destabilize secondary structures on mRNAs, facilitating translation at low temperatures. Caulobacter crescentus cspA and cspB are induced upon cold shock, while cspC and cspD are induced during stationary phase. In this work, we determined a new coding sequence for the cspC gene, revealing that it encodes a protein containing two CSDs. The phenotypes of C. crescentus csp mutants were analyzed, and we found that cspC is important for cells to maintain viability during extended periods in stationary phase. Also, cspC and cspCD strains presented altered morphology, with frequent non-viable filamentous cells, and cspCD also showed a pronounced cell death at late stationary phase. In contrast, the cspAB mutant presented increased viability in this phase, which is accompanied by an altered expression of both cspC and cspD, but the triple cspABD mutant loses this characteristic. Taken together, our results suggest that there is a hierarchy of importance among the csp genes regarding stationary phase viability, which is probably achieved by a fine tune balance of the levels of these proteins.  相似文献   

17.
S. Dong  H. Nie  D. Li  Z. Cai  X. Sun  Z. Huo  X. Yan 《Animal genetics》2020,51(3):430-438
Manila clam, Ruditapes philippinarum, is an economically important marine bivalve species. Y-box proteins are members of the cold shock proteins family and highly conserved from bacteria to humans. In this study, a novel Y-box gene (Rpybx) was cloned from the Manila clam and gene expression profiling was performed on three shell color strains (white, zebra and white zebra) and two wild populations (Southern and Northern) of R. philippinarum. The complete ORF length of Rpybx is 1367 bp, encoding 253 amino acids residues. Based on the amino acid sequence analysis and phylogenetic analysis, the Rpybx gene was identified as a member of the invertebrate Y-box proteins family. Rpybx has a similar tertiary structure to human Y-box protein YB-1. The Rpybx mRNA levels were analyzed by qPCR under acute and gradually varied cold stress. Under acute low-temperature stress, the expression of Rpybx mRNA in gills and hepatopancreas was significantly increased in all selected strains and populations (P < 0.05). The Northern population showed the lowest relative expression level of Rpybx. The expressions of Rpybx were greatly upregulated in gills and hepatopancreas of different stains and populations at 5 or −2°C under gradually varied temperature stress (P < 0.05). The results shed light on the biological function of the Rpybx gene in defending against low-temperature challenge and further exploring the molecular mechanism of cold tolerance and resistance in R. philippinarum.  相似文献   

18.
The human unr gene encodes an 85 kDa protein which contains five cold shock domains (CSD). The capacity of Unr to interact in vitro with RNA and its intracellular localization suggest that Unr could be involved in some aspect of cytoplasmic mRNA metabolism. As a step towards identification of Unr mRNA targets, we investigated the RNA-binding specificity of Unr by an in vitro selection approach (SELEX). Purine-rich sequences were selected by Unr, leading to the identification of two related consensus sequences characterized by a conserved core motif AAGUA/G or AACG downstream of a purine stretch. These consensus sequences are 11-14 nt long and appear unstructured. RNAs containing a consensus sequence were bound specifically by Unr with an apparent dissociation constant of 1 x 10(-8) M and both elements, the 5' purine stretch and the core motif, were shown to contribute to the high affinity. When the N-terminal and C-terminal CSD were analyzed individually, they exhibited a lower affinity than Unr for winner sequences (5- and 100-fold, respectively) but with similar binding specificity. Two combinations of CSDs, CSD1-2-3 and CSD1*2-3-4-5 were sufficient to achieve the high affinity of Unr, indicating some redundancy between the CSDs of Unr for RNA recognition. The SELEX-generated consensus motifs for Unr differ from the AACAUC motif selected by the Xenopus Y-box factor FRGY2, indicating that a diversity of RNA sequences could be recognized by CSD-containing proteins.  相似文献   

19.
20.
Eukaryotic Y-box proteins are nucleic acid-binding proteins implicated in a wide range of gene regulatory mechanisms. They contain the cold shock domain, which is a nucleic acid-binding structure also found in bacterial cold shock proteins. The Y-box protein YB-1 is known to be a core component of messenger ribonucleoprotein particles (mRNPs) in the cytoplasm. Here we disrupted the YB-1 gene in chicken DT40 cells. Through the immunoprecipitation of an epitope-tagged YB-1 protein, which complemented the slow-growth phenotype of YB-1-depleted cells, we isolated YB-1-associated complexes that likely represented general mRNPs in somatic cells. RNase treatment prior to immunoprecipitation led to the identification of a Y-box protein-associated acidic protein (YBAP1). The specific association of YB-1 with YBAP1 resulted in the release of YB-1 from reconstituted YB-1-mRNA complexes, thereby reducing the translational repression caused by YB-1 in the in vitro system. Our data suggest that YBAP1 induces the remodeling of YB-1-mRNA complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号