首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A complete three dimensional model for the LexA repressor dimer bound to the recA operator site consistent with relevant biochemical and biophysical data for the repressor was proposed from our laboratory when no crystal structure of LexA was available. Subsequently, the crystal structures of four LexA mutants Delta(1-67) S119A, S119A, G85D and Delta(1-67) quadruple mutant in the absence of operator were reported. It is examined in this paper to what extent our previous model was correct and how, using the crystal structure of the operator-free LexA dimer we can predict an improved model of LexA dimer bound to recA operator. In our improved model, the C-domain dimerization observed repeatedly in the mutant operator-free crystals is retained but the relative orientation between the two domains within a LexA molecule changes. The crystal structure of wild type LexA with or without the recA operator cannot be solved as it autocleaves itself. We argue that the 'cleavable' cleavage site region found in the crystal structures is actually the more relevant form of the region in wild-type LexA since it agrees with the value of the pre-exponential Arrhenius factor for its autocleavage, absence of various types of trans-cleavages, difficulty in modifying the catalytic serine by diisopropyl flourophosphate and lack of cleavage at Arg 81 by trypsin; hence the concept of a 'conformational switch' inferred from the crystal structures is meaningless.  相似文献   

2.
Binding of the Bacillus subtilis LexA protein to the SOS operator   总被引:3,自引:0,他引:3       下载免费PDF全文
The Bacillus subtilis LexA protein represses the SOS response to DNA damage by binding as a dimer to the consensus operator sequence 5′-CGAACN4GTTCG-3′. To characterize the requirements for LexA binding to SOS operators, we determined the operator bases needed for site-specific binding as well as the LexA amino acids required for operator recognition. Using mobility shift assays to determine equilibrium constants for B.subtilis LexA binding to recA operator mutants, we found that several single base substitutions within the 14 bp recA operator sequence destabilized binding enough to abolish site-specific binding. Our results show that the AT base pairs at the third and fourth positions from the 5′ end of a 7 bp half-site are essential and that the preferred binding site for a LexA dimer is 5′-CGAACATATGTTCG-3′. Binding studies with LexA mutants, in which the solvent accessible amino acid residues in the putative DNA binding domain were mutated, indicate that Arg-49 and His-46 are essential for binding and that Lys-53 and Ala-48 are also involved in operator recognition. Guided by our mutational analyses as well as hydroxyl radical footprinting studies of the dinC and recA operators we docked a computer model of B.subtilis LexA on the preferred operator sequence in silico. Our model suggests that binding by a LexA dimer involves bending of the DNA helix within the internal 4 bp of the operator.  相似文献   

3.
A model for residues 93-236 of the lambda repressor (1gfx) was predicted, based on the UmuD(') crystal structure, as part of four intact repressor molecules bound to two adjacent operator sites. The structure of region 136-230 in 1gfx was found to be nearly identical to the independently determined crystal structure of the 132-236 fragment, 1f39, released later by the PDB. Later, two more tetrameric models of the lambda repressor tetramer bound to two adjacent operator sites were constructed by us; in one of these, 1j5g, the N-domain and C-domain coordinates and hence monomer-monomer and dimer-dimer interactions are almost the same as in 1gfx, but the structure of the linker region is partly based on the linker region of the LexA dimer in 1jhe; in the other, 1lwq, the crystalline tetramer for region 140-236 has been coopted from the crystal structure deposited in 1kca, the operator DNA and N-domain coordinates of which are same as those in 1gfx and 1j5g, but the linker region is partly based on the LexA dimer structures 1jhe and 1jhh. Monomer-monomer interactions at the same operator site are stabilized by exposed hydrophobic side chains in beta-strands while cooperative interactions are mostly confined to beta(6) and some adjacent residues in both 1gfx and 1j5g. Mutational data, existence of a twofold axis relating two C-domains within a dimer, and minimization of DNA distortion between adjacent operator sites allow us to roughly position the C-domain with respect to the N-domain for both 1gfx and 1j5g. The study correlates these models with functional, biochemical, biophysical, and immunological data on the repressor in the literature. The oligomerization mode observed in the crystal structure of 132-236 may not exist in the intact repressor bound to the operator since it is shown to contradict several published biochemical data on the intact repressor.  相似文献   

4.
To analyze the DNA binding domain of E coli LexA repressor and to test whether the repressor binds as a dimer to DNA, negative dominant lexA mutations affecting the binding domain have been isolated. A large number of amino acid substitutions between amino acid positions 39 and 46 were introduced using cassette mutagenesis. Mutants defective in DNA binding were identified and then examined for dominance to lexA+. A number of substitutions weakened repressor function partially, whereas other substitutions led to a repressor with no demonstrable activity and a defective dominant phenotype. Since the LexA binding site has dyad symmetry, we infer that this dominance results from interaction of monomers of wild-type LexA protein with mutant monomers and that an oligomeric form of repressor binds to operator. The binding of LexA protein to operator DNA was investigated further using a mutant protein, LexA408, which recognizes a symmetrically altered operator mutant but not wild-type operator. A mixture of mutant LexA408 and LexA+ proteins, but neither individual protein, bound to a hybrid recA operator consisting of mutant and wild-type operator half sites. These results suggest that at least 1 LexA protein monomer interacts with each operator half site. We discuss the role of LexA oligomer formation in binding of LexA to operator DNA.  相似文献   

5.
A complete three dimensional model (RCSB000408; PDB code 1qaa) for the LexA repressor dimer bound to the recA operator site consistent with relevant biochemical and biophysical data for the repressor is proposed. A model of interaction of the N-terminal operator binding domain 1-72 with the operator was available. We have modelled residues 106-202 of LexA on the basis of the crystal structure of a homologous protein, UmuD'. Residues 70-105 have been modelled by us, residues 70-77 comprising the real hinge, followed by a beta-strand and an alpha-helix, both interacting with the rest of the C-domain. The preexponential Arrhenius factor for the LexA autocleavage is shown to be approximately 10(9) s(-1) at 298K whereas the exponential factor is approximately 2 x 10(-12), demanding that the autocleavage site is quite close to the catalytic site but reaction is slow due to an activation energy barrier. We propose that in the operator bound form, Ala 84- Gly 85 is about 7-10A from the catalytic groups, but the reaction does not occur as the geometry is not suitable for a nucleophilic attack from Ser 119 Ogamma, since Pro 87 is held in the cis conformation. When pH is elevated or under the action of activated RecA, cleavage may occur following a cis --> trans isomerization at Pro 87 and/or a rotation of the region beta9-beta10 about beta7-beta8 following the disruption of two hydrogen bonds. We show that the C-C interaction comprises the approach of two negatively charged surfaces neutralized by sodium ions, the C-domains of the monomers making a new beta barrel at the interface burying 710A2 of total surface area of each monomer.  相似文献   

6.
The lexA gene of Xanthomonas campestris pathovar citri (X.c. pv. citri) was cloned and sequenced. The 639-bp open reading frame encodes a protein of 213 amino acids that shares substantial sequence homology with the products of previously characterized lexA genes, sharing 46% identity with the LexA protein of Escherichia coli. Amino acids required for autocatalytic cleavage of LexA are conserved in the X.c. pv. citri protein, whereas domains thought to mediate DNA binding differ markedly from those of LexA proteins from E. coli and other bacteria. The X.c. pv. citri LexA protein was overexpressed in E. coli, and SDS-polyacrylamide gel electrophoresis revealed a molecular size of 23 kDa for the purified protein. A lexA mutant of X.c. pv. citri was constructed by gene replacement, and the basal level of recA expression in this mutant was shown to be similar to that for wild-type cells exposed to a DNA-damaging agent. These results indicate that LexA functions as a repressor of recA expression in X.c. pv. citri. Received: 1 September 1999 / Accepted: 25 October 1999  相似文献   

7.
Inactivation of the lambdoid phage repressor protein is necessary to induce lytic growth of a lambdoid prophage. Activated RecA, the mediator of the host SOS response to DNA damage, causes inactivation of the repressor by stimulating the repressor's nascent autocleavage activity. The repressor of bacteriophage lambda and its homolog, LexA, preferentially undergo RecA-stimulated autocleavage as free monomers, which requires that each monomer mediates its own (intramolecular) cleavage. The cI repressor of bacteriophage 434 preferentially undergoes autocleavage as a dimer specifically bound to DNA, opening the possibility that one 434 repressor subunit may catalyze proteolysis of its partner subunit (intermolecular cleavage) in the DNA-bound dimer. Here, we first identified and mutagenized the residues at the cleavage and active sites of 434 repressor. We utilized the mutant repressors to show that the DNA-bound 434 repressor dimer overwhelmingly prefers to use an intramolecular mechanism of autocleavage. Our data suggest that the 434 repressor cannot be forced to use an intermolecular cleavage mechanism. Based on these data, we propose a model in which the cleavage-competent conformation of the repressor is stabilized by operator binding.  相似文献   

8.
9.
A critical step in the SOS response of Escherichia coli is the specific proteolytic cleavage of the LexA repressor. This reaction is catalyzed by an activated form of RecA, acting as a co-protease to stimulate the self-cleavage activity of LexA. This process has been reexamined in light of evidence that LexA is dimeric at physiological concentrations. We found that RecA-dependent cleavage was robust under conditions in which LexA is largely dimeric and conclude that LexA dimers are cleavable. We also found that LexA dimers dissociate slowly. Furthermore, our evidence suggests that interactions between the two subunits of a LexA dimer can influence the rate of cleavage. Finally, our evidence suggests that RecA stimulates the transition of LexA from its noncleavable to its cleavable conformation and therefore operates, at least in part, by an allosteric mechanism.  相似文献   

10.
Plasmid pUC19-recAoc carrying a mutant allele of the recA gene, which plays the key role in the control of the SOS repair system and homologous recombinational repair, causes a 1.5-fold increase in radiation resistance of Escherichia coli ΔrecA cells, as compared to the wild-type recA + cells. The protective effect of this plasmid is drastically reduced in mutant lexA3 recAΔ21 deficient in the LexA protein and in induction of the SOS regulon. Plasmid pUC19-recAoc effectively suppresses UV sensitivity of the ΔrecA mutant. Mutation recAo20 allows constitutive high-level synthesis of the RecA protein. This mutation impairs the SOS box in the operator site of the recA gene and enhances heterology of the dimer LexA binding site. These data confirm that high level of the RecA protein synthesis per se is not sufficient for the expression of γ-inducible functions and that the derepression of lexA-dependent genes, other than recA gene, is necessary for the complete induction of the SOS repair system.  相似文献   

11.
The protein HU can displace the LexA repressor from its DNA-binding sites   总被引:7,自引:2,他引:5  
The major bacterial histone-like protein HU is a small, basic, dimeric protein composed of two closely related subunits. HU is involved in several processes in the bacterial cell such as the initiation of replication, transposition, gene inversion and cell division. It has been suggested that HU could introduce structural changes to the DNA which would facilitate or inhibit the binding of regulatory proteins to their specific sites. In this study we investigated the effect of HU on the binding of LexA protein, the regulator of SOS functions, to three of its specific binding sites. We show that HU can displace LexA from its binding sites on the operators of the lexA, recA and sfiA genes. The lexA operator was the most sensitive while the higher affinity sfiA operator was the least sensitive. Since HU, like its homologue IHF, probably binds DNA in the minor groove we tested the effect of distamycin, a drug which binds to the minor groove, on LexA binding. Like HU, this drug disrupted LexA–operator complexes. These results suggest that distortion of the minor groove of the lexA operators excludes the binding of the repressor to the major groove.  相似文献   

12.
The α-centred trp operator binds one dimer of the Trp repressor, whereas the β-centred trp operator binds two dimers of the Trp repressor (Carey et al., 1991; Haran et al., 1992). The Trp repressor with a Tyr-Gly-7 substitution binds almost as well as the wild-type Trp repressor to the α-centred trp operator, but it does not bind to the β-centred trp operator. This confirms that Tyr-7 is involved in the interaction between Trp repressor dimers, as seen in the crystal structure (Lawson and Carey, 1993). Further experiments with a-centred trp operator variants showed that positions 1 of the a-centred trp operators play a crucial role in tetramerisation. The two innermost base pairs of the α-centred trp operator are not involved in contacts with the dimer of the Trp repressor binding to it. However, substitutions in these positions (T-A to G-T) effectively transform the α-centred trp operator into a β-centred trp operator, and thus encourage the binding of two Trp repressor dimers to this operator. Finally, we demonstrate, with suitable heterodimers, that one subunit of each dimer suffices to bind to a β-centred trp operator.  相似文献   

13.
The replacement of Escherichia coli recA gene (recAEc) with the Pseudomonas aeruginosa recAPa gene in Escherichia coli cells results in constitutive hyper-recombination (high frequency of recombination exchanges per unit length of DNA) in the absence of constitutive SOS response. To understand the biochemical basis of this unusual in vivo phenotype, we compared in vitro the recombination properties of RecAPa protein with those of RecAEc protein. Consistent with hyper-recombination activity, RecAPa protein appeared to be more proficient both in joint molecule formation, producing extensive DNA networks in strand exchange reaction, and in competition with single-stranded DNA binding (SSB) protein for single-stranded DNA (ssDNA) binding sites. The RecAPa protein showed in vitro a normal ability for cleavage of the E. coli LexA repressor (a basic step in SOS regulon derepression) both in the absence and in the presence (i.e. even under suboptimal conditions for RecAEc protein) of SSB protein. However, unlike other hyper-recombinogenic proteins, such as RecA441 and RecA730, RecAPa protein displaced insufficient SSB protein from ssDNA at low magnesium concentration to induce the SOS response constitutively. In searching for particular characteristics of RecAPa in comparison with RecAEc, RecA441 and RecA803 proteins, RecAPa showed unusually high abilities: to be resistant to the displacement by SSB protein from poly(dT); to stabilize a ternary complex RecA::ATP::ssDNA to high salt concentrations; and to be much more rapid in both the nucleation of double-stranded DNA (dsDNA) and the steady-state rate of dsDNA-dependent ATP hydrolysis at pH 7.5. We hypothesized that the high affinity of RecAPa protein for ssDNA, and especially dsDNA, is the factor that directs the ternary complex to bind secondary DNA to initiate additional acts of recombination instead of to bind LexA repressor to induce constitutive SOS response.  相似文献   

14.
Summary The cloned recA + gene of Proteus mirabilis substitutes for a defective RecA protein in Escherichia coli recA mutants, and restores recombination, repair and phage induction functions to near normal levels. In a previous report, we described the purification and charactrisation of the recombination activities of the P. mirabilis RecA protein (West et al. 1983b). In this paper, we show that the purified protein catalyses the cleavage of both the Escherichia coli LexA protein and the bacteriophage lambda repressor in vitro. These results provide a direct biochemical basis for the interspecies complementation observed in vivo and suggest that P. mirabilis has an SOS regulatory network similar to that of E. coli.  相似文献   

15.
16.
17.
The actions of UmuDC and RecA proteins, respectively in SOS mutagenesis are studied here with the following experimental strategy. We used lexAl (Ind) bacteria to maintain all SOS proteins at their basal concentrations and then selectively increased the concentration of either UmuDC or RecA protein. For this purpose, we isolated operator-constitutive mutations o c in the umuDC and umuD'C operons and also used the o 98 c -recA mutation. The o 1 c -umuDC mutation prevents LexA repressor from binding to the operator and improves the Pribnow box consensus sequence. As a result, 5000 UmuD and 500 UmuC molecules per cell were produced in lexAl bacteria. This concentration is sufficient to restore SOS mutagenesis. The level of RecA protein present in the repressed state promoted full UmuD cleavage. Overproduction of RecA alone did not promote SOS mutagenesis. Increasing the level of RecA in the presence of high concentrations of UmuDC proteins has no further effect on SOS mutgenesis. We conclude that, after DNA damage, umuDC is the only SOS operon that must be induced in Escherichia coli to promote SOS mutagenesis.  相似文献   

18.
The LexA repressor of Escherichia coli modulates the expression of the SOS regulon. In the presence of DNA damaging agents in vivo, the 202-amino acid LexA repressor is inactivated by specific RecA-mediated cleavage of the Ala-84/Gly-85 peptide bond. In vitro. LexA cleavage requires activated RecA at neutral pH, and proceeds spontaneously at high pH in an intramolecular reaction termed autodigestion. A model has been proposed for the mechanism of autodigestion in which serine 119 serves as the reactive nucleophile that attacks the Ala-84/Gly-85 peptide bond in a manner analogous to a serine protease, while uncharged lysine 156 activates the serine 119 hydroxyl group. In this work, we have tested this model by examining the effect of the serine protease inhibitor diisopropyl fluorophosphate (DFP) on autodigestion. We found that DFP inhibited autodigestion and that serine 119 was the only serine residue to react with DFP. We also examined [3H]DFP incorporation by a number of cleavage-impaired LexA mutant proteins and found that mutations in the proposed active site, but not in the cleavage site, significantly reduced the rate of [3H]DFP incorporation. Finally, we showed that the purified carboxyl-terminal domain, which contains the proposed catalytic residues, incorporated [3H]DFP at a rate indistinguishable from the intact protein. These data further support our current model for the mechanism of autodigestion and the organization of LexA.  相似文献   

19.
Summary The complete nucleotide sequences of the lexA genes from Salmonella typhimurium, Erwinia carotovora, Pseudomonas aeruginosa and Pseudomonas putida were determined; the DNA sequences of the lexA genes from these bacteria were 86%, 76%, 61% and 59% similar, respectively, to the Escherichia coli K12 gene. The predicted amino acid sequences of the S. typhimurium, E. carotovora and P. putida LexA proteins are 202 residues long whereas that of P. aeruginosa is 204. Two putative LexA repressor binding sites were localized upstream of each of the heterologous genes, the distance between them being 5 by in S. typhimurium and E. carotovora, as in the lexA gene of E. coli, and 3 by in P. putida and P. aeruginosa. The first lexA site present in the lexA operator of all five bacteria is very well conserved. However, the second lexA box is considerably more variable. The Ala-84 — Gly-85 bond, at which the LexA repressor of E. coli is cleaved during the induction of the SOS response, is also found in the LexA proteins of S. typhimurium and E. carotovora. Likewise, the amino acids Ser-119 and Lys-156 are present in all of these three LexA repressors. These residues also exist in the LexA proteins of P. putida and P. aeruginosa, but they are displaced by 4 and 6 residues, respectively. Furthermore, the structure and sequence of the DNA-binding domain of the LexA repressor of E. coli are highly conserved in the S. typhimurium, E. carotovora, P. aeruginosa and P. putida LexA proteins.  相似文献   

20.
A structural model for the interaction of the LexA repressor DNA binding domain (DBD) with operator DNA is derived by means of Monte Carlo docking. Protein–DNA complexes were generated by docking the LexA repressor DBD NMR solution structure onto both rigid and bent B-DNA structures while giving energy bonuses for contacts in agreement with experimental data. In the resulting complexes, helix III of the LexA repressor DBD is located in the major groove of the DNA and residues Asn-41, Glu-44, and Glu-45 form specific hydrogen bonds with bases of the CTGT DNA sequence. Ser-39, Ala-42, and Asn-41 are involved in a hydrophobic interaction with the methyl group of the first thymine base. Residues in the loop region connecting the two β-sheet strands are involved in nonspecific contacts near the dyad axis of the operator. The contacts observed in the docked complexes cover the entire consensus CTGT half-site DNA operator, thus explaining the specificity of the LexA repressor for such sequences. In addition, a large number of nonspecific interactions between protein and DNA is observed. The agreement between the derived model for the LexA repressor DBD/DNA complex and experimental biochemical results is discussed. © 1995 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号