首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A targeted molecular dynamics study of WPD loop movement in PTP1B   总被引:2,自引:0,他引:2  
Targeted molecular dynamics was used to examine the mechanism of WPD loop closure in PTP1B, which is essential for the activity of the enzyme. Two important regions are identified: the R-loop (residues 113-118), which assists in substrate binding, and the S-loop (residues 198-209), which undergoes a conformational change that appears to be vital for the movement of the WPD loop. The S-loop is adjacent to the alpha3-helix, and its conformational change is coupled with a change of interactions between the alpha3- and alpha7-helices. This latter observation is of particular interest in connection with a novel class of allosteric inhibitors of PTP1B [Wiesmann et al., Nat. Struc. Mol. Biol. 11 (2004) 730-737]. These compounds prevent the closure of the WPD loop, forcing the enzyme to remain in a catalytically inactive conformation, by blocking the rearrangement of the alpha3-helix relative to the alpha7-helix.  相似文献   

2.
In protein tyrosine phosphatase 1B (PTP1B), the flexible WPD loop adopts a closed conformation (WPDclosed) in the active state of PTP1B, bringing the catalytic Asp181 close to the active site pocket, while WPD loop is in an open conformation (WPDopen) in the inactive state. Previous studies showed that Asp181 may be protonated at physiological pH, and ordered water molecules exist in the active site. In the current study, molecular dynamics simulations are employed at different Asp181 protonation states and initial positions of active site water molecules, and compared with the existing crystallographic data of PTP1B. In WPDclosed conformation, the active site is found to maintain its conformation only in the protonated state of Asp181 in both free and liganded states, while Asp181 is likely to be deprotonated in WPDopen conformation. When the active site water molecule network that is a part of the free WPDclosed crystal structure is disrupted, intermediate WPD loop conformations, similar to that in the PTPRR crystal structure, are sampled in the MD simulations. In liganded PTP1B, one active site water molecule is found to be important for facilitating the orientation of Cys215 and the phosphate ion, thus may play a role in the reaction. In conclusion, conformational stability of WPD loop, and possibly catalytic activity of PTP1B, is significantly affected by the protonation state of Asp181 and position of active site water molecules, showing that these aspects should be taken into consideration both in MD simulations and inhibitor design. © Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

3.
The C-terminus of Protein Tyrosine Phosphatase 1B (PTP1B) includes an α-helix α7), which forms an allosteric binding site 20 ? away from the active site. This helix is specific to PTP1B and its truncation decreases the catalytic activity significantly. Here, molecular dynamics (MD) simulations in the presence and absence of α7 were performed to investigate the role played by α7. The highly mobile α7 was found to maintain its contacts with loop 11 (L11)α3 helix throughout the simulations. The interactions of Tyr152 on L11, Tyr176, Thr177 on the catalytically important WPD loop and Ser190 on α3 are important for the conformational stability and the concerted motions of the regions surrounding the WPD loop. In the absence of α7, L11 and WPD loop move away from their crystal structure conformations, resulting in the loss of the interactions in this region, and a decrease in the residue displacement correlations in the vicinity of WPD loop. Therefore, we suggest that one of the functionally important roles of α7 may be to limit the L11 and α3 motions, and, facilitate the WPD loop motions. Truncation of α7 in PTP1B is found to affect distant regions as well, such as the substrate recognition site and the phosphate binding-loop (P-loop), changing the conformations of these regions significantly. Our results show that the PTP1B specific α7 is important for the conformation and dynamics of the WPD loop, and also may play a role in ligand binding.  相似文献   

4.
5.
6.
RASSF1A 基因在乳腺癌发生、发展中的作用   总被引:1,自引:1,他引:0       下载免费PDF全文
RASSF1A基因是新近发现的新型候选抑癌基因,其正常表迭能够抑制肿瘤的发生。启动于区域CpG岛异常甲基化可以导致其失活,并在乳腺癌的发生、发展起着重要作用。RASSF1A的甲基化状态检测具有重要的临床意义,有望为乳腺癌的早期诊断、疗效监测、预后判断提供新的参考指标,而逆转RASSF1A的甲基化则可能为乳腺癌治疗提供新的方向。  相似文献   

7.
8.
A cystatin α-sensitive cysteine proteinase that plays an important role in the lysosomal inactivation and degradation of L-lactate dehydrogenase (LDH) was purified by column chromatography from an ammonium sulfate precipitate of lysosome extract prepared from rat livers. It was eluted with marked delay from cathepsins B and H in a Sephacryl S-200 column by its specific interaction with the gel, and then effectively separated from cathepsins B and H and other proteins. It was eluted with 0.5 M NaCl after washing with 0.2 M NaCl in a CM-Sephadex column, indicating that it showed the same elution behavior as cathepsin L from the CM-Sephadex column. It had activity to hydrolyze z-Phe-Arg-NH-Mec, a synthetic substrate for cysteine proteinases, including cathepsins B and L. The N-terminal sequences of the final preparation of LDH-inactivating enzyme were identical with those of rat cathepsin L. Inactivation and degradation of LDH by the final preparation were observed and effectively inhibited by a low level of cystatin α as well as a general cysteine proteinase inhibitor, leupeptin or (L-3-trans-carboxyoxirane-2-carbonyl)-L-leucine (3-methylbutyl)amide (E-64-c). From these results, it is concluded that cathepsin L plays a critical role in the lysosomal degradation of native LDH.  相似文献   

9.
10.
11.
Methylglyoxal is a cytotoxic reactive carbonyl compound produced by central metabolism. Dedicated glyoxalases convert methylglyoxal to d-lactate using multiple catalytic strategies. In this study, the DJ-1 superfamily member ORF 19.251/GLX3 from Candida albicans is shown to possess glyoxalase activity, making this the first demonstrated glutathione-independent glyoxalase in fungi. The crystal structure of Glx3p indicates that the protein is a monomer containing the catalytic triad Cys136-His137-Glu168. Purified Glx3p has an in vitro methylglyoxalase activity (Km = 5.5 mm and kcat = 7.8 s−1) that is significantly greater than that of more distantly related members of the DJ-1 superfamily. A close Glx3p homolog from Saccharomyces cerevisiae (YDR533C/Hsp31) also has glyoxalase activity, suggesting that fungal members of the Hsp31 clade of the DJ-1 superfamily are all probable glutathione-independent glyoxalases. A homozygous glx3 null mutant in C. albicans strain SC5314 displays greater sensitivity to millimolar levels of exogenous methylglyoxal, elevated levels of intracellular methylglyoxal, and carbon source-dependent growth defects, especially when grown on glycerol. These phenotypic defects are complemented by restoration of the wild-type GLX3 locus. The growth defect of Glx3-deficient cells in glycerol is also partially complemented by added inorganic phosphate, which is not observed for wild-type or glucose-grown cells. Therefore, C. albicans Glx3 and its fungal homologs are physiologically relevant glutathione-independent glyoxalases that are not redundant with the previously characterized glutathione-dependent GLO1/GLO2 system. In addition to its role in detoxifying glyoxals, Glx3 and its close homologs may have other important roles in stress response.  相似文献   

12.
13.
The copper-transporting P-type ATPases (Cu-ATPases), ATP7A and ATP7B, are essential for the regulation of intracellular copper homeostasis. In this report we describe new roles for glutathione (GSH) and glutaredoxin1 (GRX1) in Cu homeostasis through their regulation of Cu-ATPase activity. GRX1 is a thiol oxidoreductase that catalyzes the reversible reduction of GSH-mixed disulfides to their respective sulfhydryls (deglutathionylation). Here, we demonstrated that glutathionylation of the Cu-ATPases and their interaction with GRX1 were affected by alterations in Cu levels. The data support our hypothesis that the Cu-ATPases serve as substrates for Cu-dependent GRX1-mediated deglutathionylation. This in turn liberates the Cu-ATPase cysteinyl thiol groups for Cu binding and transport. GSH depletion experiments led to reversible inhibition of the Cu-ATPases that correlated with effects on intracellular Cu levels and GRX1 activity. Finally, knockdown of GRX1 expression resulted in an increase in intracellular Cu accumulation. Together, these data directly implicate GSH and GRX1 with important new roles in redox regulation of the Cu-ATPases, through modulation of Cu binding by the Cu-ATPase cysteine motifs.  相似文献   

14.
Apicomplexan parasites are obligate intracellular parasites that infect a variety of hosts, causing significant diseases in livestock and humans. The invasive forms of the parasites invade their host cells by gliding motility, an active process driven by parasite adhesion proteins and molecular motors. A crucial point during host cell invasion is the formation of a ring-shaped area of intimate contact between the parasite and the host known as a tight junction. As the invasive zoite propels itself into the host-cell, the junction moves down the length of the parasite. This process must be tightly regulated and signalling is likely to play a role in this event. One crucial protein for tight-junction formation is the apical membrane antigen 1 (AMA1). Here we have investigated the phosphorylation status of this key player in the invasion process in the human malaria parasite Plasmodium falciparum. We show that the cytoplasmic tail of P. falciparum AMA1 is phosphorylated at serine 610. We provide evidence that the enzyme responsible for serine 610 phosphorylation is the cAMP regulated protein kinase A (PfPKA). Importantly, mutation of AMA1 serine 610 to alanine abrogates phosphorylation of AMA1 in vivo and dramatically impedes invasion. In addition to shedding unexpected new light on AMA1 function, this work represents the first time PKA has been implicated in merozoite invasion.  相似文献   

15.
采用寡聚核苷酸指导的体外基因定点突变方法,将重组人肿瘤坏死因子第20位脯氨酸变为精氨酸。突变体在大肠杆菌中的表达量是TNFPro20的60%。表达产物经一系列离子交换层析分离纯化以后,突变体的比活是TNFPro20的千分之。一突变体和TNFPro20在非变性非还原的条件下进行聚丙烯酰胺凝胶电泳,两者显示相同的区带,这表明突变体也可以形成三聚体活性形式,TNFPro20和突变体的荧光光谱分析揭示,A  相似文献   

16.
The viroporin p7 of the hepatitis C virus forms multimeric channels eligible for ion transport across the endoplasmic reticulum membrane. Currently the subject of many studies and discussion, the molecular assembly of the ion channel and the structural characteristics of the p7 monomer are not yet fully understood. Structural investigation of p7 has been carried out only in detergent environments, making the interpretation of the experimental results somewhat questionable. Here, we analyze by means of molecular dynamics simulations the structure of the p7 monomer as a function of its sequence, initial conformation and environment. We investigate the conductance properties of three models of a hexameric p7 ion channel by examining ion translocation in a pure lipid bilayer. It is noteworthy that although none of the models reflects the experimentally observed trend to conduct preferentially cations, we were able to identify the position and orientation of titratable acidic or basic residues playing a crucial role in ion selectivity and in the overall conductance of the channel. In addition, too compact a packing of the monomers leads to channel collapse rather than formation of a reasonable pore, amenable to ion translocation. The present findings are envisioned to help assess the physiological relevance of p7 ion channel models consisting of multimeric structures obtained in non-native environments.  相似文献   

17.
Newly assembled dengue viruses (DENV) undergo maturation to become infectious particles. The maturation process involves major rearrangement of virus surface premembrane (prM) and envelope (E) proteins. The prM-E complexes on immature viruses are first assembled as trimeric spikes in the neutral pH environment of the endoplasmic reticulum. When the virus is transported to the low pH environment of the exosomes, these spikes rearrange into dimeric structures, which lie parallel to the virus lipid envelope. The proteins involved in driving this process are unknown. Previous cryoelectron microscopy studies of the mature DENV showed that the prM-stem region (residues 111–131) is membrane-associated and may interact with the E proteins. Here we investigated the prM-stem region in modulating the virus maturation process. The binding of the prM-stem region to the E protein was shown to increase significantly at low pH compared with neutral pH in ELISAs and surface plasmon resonance studies. In addition, the affinity of the prM-stem region for the liposome, as measured by fluorescence correlation spectroscopy, was also increased when pH is lowered. These results suggest that the prM-stem region forms a tight association with the virus membrane and attracts the associated E protein in the low pH environment of exosomes. This will lead to the surface protein rearrangement observed during maturation.  相似文献   

18.
Abstract

The sirtuin family comprises seven NAD+-dependent histone deacetylases named SIRT1 to SIRT7. The least investigated SIRT7 is currently considered as a promising therapeutic target for cardiovascular diseases, diabetes and different types of cancer. So far, its structure was not experimentally resolved, except of a fragment of its N-terminus. The aim of this study was to create in silico model of SIRT7 containing its core together with N-terminus, which is known to affect the enzyme’s catalytic activity and to find pockets that could be targeted by structure-based virtual screening. Homology model of SIRT7 was prepared using X-ray structures of other sirtuins and a resolved fragment of the N-terminus of SIRT7 as templates. All atom-unbiased molecular dynamics simulations were performed. It was found that N-terminus of SIRT7 remains in spatial proximity of the catalytic core for considerable fraction of time, and therefore, it may affect its catalytic activity by helping the enzyme to hold the substrate peptide. It may also participate in holding and release of the cofactor. Preferred orientations of NAD+?and acetyl-lysine inside SIRT7 were found, with all components forming a stable complex. Molecular dynamics provided an ensemble of conformations that will be targeted with virtual screening. Reliable in silico structure of SIRT7 will be a useful tool in searching for its inhibitors, which can be potential drugs in cancer treatment.

Communicated by Ramaswamy H. Sarma  相似文献   

19.
Using comparative genomic hybridization analysis for an autism spectrum disorder (ASD) patient, a 73‐Kb duplication at 19q13.33 (nt. 49 562 755–49 635 956) including LIN7B and 5 other genes was detected. We then identified a novel frameshift mutation in LIN7B in another ASD patient. Since LIN7B encodes a scaffold protein essential for neuronal function, we analyzed the role of Lin‐7B in the development of cerebral cortex. Acute knockdown of Lin‐7B with in utero electroporation caused a delay in neuronal migration during corticogenesis. When Lin‐7B was knocked down in cortical neurons in one hemisphere, their axons failed to extend efficiently into the contralateral hemisphere after leaving the corpus callosum. Meanwhile, enhanced expression of Lin‐7B had no effects on both cortical neuron migration and axon growth. Notably, silencing of Lin‐7B did not affect the proliferation of neuronal progenitors and stem cells. Taken together, Lin‐7B was found to play a pivotal role in corticogenesis through the regulation of excitatory neuron migration and interhemispheric axon growth, while further analyses are required to directly link functional defects of Lin‐7B to ASD pathophysiology.

  相似文献   


20.
目的通过研究吸烟对大鼠肺组织B7-1/B7-2及其相关配体表达的影响,探讨专职抗原提呈细胞(APC)在吸烟所致肺部慢性炎症发生发展中的作用。方法将30只健康雄性Wistar大鼠随机分为不吸烟组、吸烟6周组和吸烟12周组,每组10只。采用免疫组化半定量法测定大鼠气道周围肺间质中慢性炎症细胞胞膜B7-1、B7-2、CD28和CTLA-4的表达水平。结果吸烟6周组与吸烟12周组大鼠肺组织B7-1、B7-2、CD28和CTLA-4表达量较不吸烟组均显著增高(P〈0.01),吸烟12周组较吸烟6周组表达量也均增高(P〈0.01),随吸烟时间的延长各指标表达量均呈上升趋势。结论吸烟可引起大鼠肺组织B7/CD28/CTLA-4表达水平的增高,提示APC可能在吸烟所致肺部慢性炎症发生发展中起重要作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号