首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 983 毫秒
1.
The molecular recognition and discrimination of very similar ligand moieties by proteins are important subjects in protein–ligand interaction studies. Specificity in the recognition of molecules is determined by the arrangement of protein and ligand atoms in space. The three pyrimidine bases, viz. cytosine, thymine, and uracil, are structurally similar, but the proteins that bind to them are able to discriminate them and form interactions. Since nonbonded interactions are responsible for molecular recognition processes in biological systems, our work attempts to understand some of the underlying principles of such recognition of pyrimidine molecular structures by proteins. The preferences of the amino acid residues to contact the pyrimidine bases in terms of nonbonded interactions; amino acid residue–ligand atom preferences; main chain and side chain atom contributions of amino acid residues; and solvent-accessible surface area of ligand atoms when forming complexes are analyzed. Our analysis shows that the amino acid residues, tyrosine and phenyl alanine, are highly involved in the pyrimidine interactions. Arginine prefers contacts with the cytosine base. The similarities and differences that exist between the interactions of the amino acid residues with each of the three pyrimidine base atoms in our analysis provide insights that can be exploited in designing specific inhibitors competitive to the ligands.  相似文献   

2.
Amino acids in peptides and proteins display distinct preferences for alpha-helical, beta-strand, and other conformational states. Various physicochemical reasons for these preferences have been suggested: conformational entropy, steric factors, hydrophobic effect, and backbone electrostatics; however, the issue remains controversial. It has been proposed recently that the side-chain-dependent solvent screening of the local and non-local backbone electrostatic interactions primarily determines the preferences not only for the alpha-helical but also for all other main-chain conformational states. Side-chains modulate the electrostatic screening of backbone interactions by excluding the solvent from the vicinity of main-chain polar atoms. The deficiency of this electrostatic screening model of amino acid preferences is that the relationships between the main-chain electrostatics and the amino acid preferences have been demonstrated for a limited set of six non-polar amino acid types in proteins only. Here, these relationships are determined for all amino acid types in tripeptides, dekapeptides, and proteins. The solvation free energies of polar backbone atoms are approximated by the electrostatic contributions calculated by the finite difference Poisson-Boltzmann and the Langevin dipoles methods. The results show that the average solvation free energy of main-chain polar atoms depends strongly on backbone conformation, shape of side-chains, and exposure to solvent. The equilibrium between the low-energy beta-strand conformation of an amino acid (anti-parallel alignment of backbone dipole moments) and the high-energy alpha conformation (parallel alignment of backbone dipole moments) is strongly influenced by the solvation of backbone polar atoms. The free energy cost of reaching the alpha conformation is by approximately 1.5 kcal/mol smaller for residues with short side-chains than it is for the large beta-branched amino acid residues. This free energy difference is comparable to those obtained experimentally by mutation studies and is thus large enough to account for the distinct preferences of amino acid residues. The screening coefficients gamma(local)(r) and gamma(non-local)(r) correlate with the solvation effects for 19 amino acid types with the coefficients between 0.698 to 0.851, depending on the type of calculation and on the set of point atomic charges used. The screening coefficients gamma(local)(r) increase with the level of burial of amino acids in proteins, converging to 1.0 for the completely buried amino acid residues. The backbone solvation free energies of amino acid residues involved in strong hydrogen bonding (for example: in the middle of an alpha-helix) are small. The hydrogen bonded backbone is thus more hydrophobic than the peptide groups in random coil. The alpha-helix forming preference of alanine is attributed to the relatively small free energy cost of reaching the high-energy alpha-helix conformation. These results confirm that the side-chain-dependent solvent screening of the backbone electrostatic interactions is the dominant factor in determining amino acid conformational preferences.  相似文献   

3.
The environmental preference for the occurrence of noncanonical hydrogen bonding and cation-pi interactions, in a data set containing 71 nonredundant (alpha/beta)(8) barrel proteins, with respect to amino acid type, secondary structure, solvent accessibility, and stabilizing residues has been performed. Our analysis reveals some important findings, which include (a) higher contribution of weak interactions mediated by main-chain atoms irrespective of the amino acids involved; (b) domination of the aromatic amino acids among interactions involving side-chain atoms; (c) involvement of strands as the principal secondary structural unit, accommodating cross strand ion pair interaction and clustering of aromatic amino acid residues; (d) significant contribution to weak interactions occur in the solvent exposed areas of the protein; (e) majority of the interactions involve long-range contacts; (f) the preference of Arg is higher than Lys to form cation-pi interaction; and (g) probability of theoretically predicted stabilizing amino acid residues involved in weak interaction is higher for polar amino acids such as Trp, Glu, and Gln. On the whole, the present study reveals that the weak interactions contribute to the global stability of (alpha/beta)(8) TIM-barrel proteins in an environment-specific manner, which can possibly be exploited for protein engineering applications.  相似文献   

4.
Despite sharing many common features, adenine-binding and guanine-binding sites in proteins often show a clear preference for the cognate over the non-cognate ligand. We have analyzed electrostatic potential (ESP) patterns at adenine and guanine-binding sites of a large number of non-redundant proteins where each binding site was first annotated as adenine/guanine-specific or non-specific from a survey of primary literature. We show that more than 90% of ESP variance at the binding sites is accounted for by only two principal component ESP vectors, each aligned to molecular dipoles of adenine and guanine. Projected on these principal component vectors, the adenine/guanine-specific and non-specific binding sites, including adenine-containing dinucleotides, show non-overlapping distributions. Adenine or guanine specificities of the binding sites also show high correlation with the corresponding electrostatic replacement (cognate by non-cognate ligand) energies. High correlation coefficients (0.94 for 35 adenine-binding sites and 1.0 for 20 guanine-binding sites) were obtained when adenine/guanine specificities were predicted using the replacement energies. Our results demonstrate that ligand-free protein ESP is an excellent indicator for discrimination between adenine and guanine-specific binding sites and that ESP of ligand-free protein can be used as a tool to annotate known and putative purine-binding sites in proteins as adenine or guanine-specific.  相似文献   

5.
We have developed a method of searching for similar spatial arrangements of atoms around a given chemical moiety in proteins that bind a common ligand. The first step in this method is to consider a set of atoms that closely surround a given chemical moiety. Then, to compare the spatial arrangements of such surrounding atoms in different proteins, they are translated and rotated so that the chemical moieties are superposed on each other. Spatial arrangements of surrounding atoms in a pair of proteins are judged to be similar, when there are many corresponding atoms occupying similar spatial positions. Because the method focuses on the arrangements of surrounding atoms, it can detect structural similarities of binding sites in proteins that are dissimilar in their amino acid sequences or in their chain folds. We have applied this method to identify modes of nucleotide base recognition by proteins. An all-against-all comparison of the arrangements of atoms surrounding adenine moieties revealed an unexpected structural similarity between protein kinases, cAMP-dependent protein kinase (cAPK), and casein kinase-1 (CK1), and D-Ala:D-Ala ligase (DD-ligase) at their adenine-binding sites, despite a lack of similarity in their chain folds. The similar local structure consists of a four-residue segment and three sequentially separated residues. In particular the four-residue segments of these enzymes were found to have nearly identical conformations in their backbone parts, which are involved in the recognition of adenine. This common local structure was also found in substrate-free three-dimensional structures of other proteins that are similar to DD-ligase in the chain fold and of other protein kinases. As the proteins with different folds were found to share a common local structure, these proteins seem to constitute a remarkable example of convergent evolution for the same recognition mechanism. Received: 9 December 1996 / Accepted: 7 February 1997  相似文献   

6.
In this study we have described the non-canonical interactions between the porphyrin ring and the protein part of porphyrin-containing proteins to better understand their stabilizing role. The analysis reported in this study shows that the predominant type of non-canonical interactions at porphyrins are CH···O and CH···N interactions, with a small percentage of CH···π and non-canonical interactions involving sulfur atoms. The majority of non-canonical interactions are formed from side-chains of charged and polar amino acids, whereas backbone groups are not frequently involved. The main-chain non-canonical interactions might be slightly more linear than the side-chain interactions, and they have somewhat shorter median distances. The analysis, performed in this study, shows that about 44% of the total interactions in the dataset are involved in the formation of multiple (furcated) non-canonical interactions. The high number of porphyrin–water interactions show importance of the inclusion of solvent in protein–ligand interaction studies. Furthermore, in the present study we have observed that stabilization centers are composed predominantly from nonpolar amino acid residues. Amino acids deployed in the environment of porphyrin rings are deposited in helices and coils. The results from this study might be used for structure-based porphyrin protein prediction and as scaffolds for future porphyrin-containing protein design.  相似文献   

7.
The interaction between the nucleic acid bases and solvent molecules has an important effect in various biochemical processes. We have calculated total energy and free energy of the solvation of DNA bases in water by Monte Carlo simulation. Adenine, guanine, cytosine, and thymine were first optimized in the gas phase and then placed in a cubic box of water. We have used the TIP3 model for water and OPLS for the nucleic acid bases. The canonical (T, V, N) ensemble at 25°C and Metropolis sampling technique have been used. Good agreement with other available computational data was obtained. Radial distribution functions of water around each site of adenine, guanine, cytosine, and thymine have been computed and the results have shown the ability of the sites for hydrogen bonding and other interactions. The computations have shown that guanine has the highest value of solvation free energy and N7 and N6 in adenine and guanine, N3 in cytosine, and N3 and O4 in thymine have the largest radial distribution function. Monte Carlo simulation has also been performed using the CHARMM program under the same conditions, and the results of two procedures are compared.  相似文献   

8.
The interaction between the nucleic acid bases and solvent molecules has an important effect in various biochemical processes. We have calculated total energy and free energy of the solvation of DNA bases in water by Monte Carlo simulation. Adenine, guanine, cytosine, and thymine were first optimized in the gas phase and then placed in a cubic box of water. We have used the TIP3 model for water and OPLS for the nucleic acid bases. The canonical (T, V, N) ensemble at 25 degrees C and Metropolis sampling technique have been used. Good agreement with other available computational data was obtained. Radial distribution functions of water around each site of adenine, guanine, cytosine, and thymine have been computed and the results have shown the ability of the sites for hydrogen bonding and other interactions. The computations have shown that guanine has the highest value of solvation free energy and N7 and N6 in adenine and guanine, N3 in cytosine, and N3 and O4 in thymine have the largest radial distribution function. Monte Carlo simulation has also been performed using the CHARMM program under the same conditions, and the results of two procedures are compared.  相似文献   

9.
10.
Zn-alpha(2)-glycoprotein (ZAG) is a soluble lipid-mobilizing factor associated with cancer cachexia and is a novel adipokine. Its X-ray crystal structure reveals a poly(ethylene glycol) molecule, presumably substituting for a higher affinity natural ligand, occupying an apolar groove between its alpha(1) and alpha(2) domain helices that corresponds to the peptide binding groove in class I MHC proteins. We previously provided evidence that the groove is a binding site for hydrophobic ligands that may relate to the protein's signaling function and that the natural ligands are probably (polyunsaturated) fatty acid-like. Using fluorescence-based binding assays and site-directed mutagenesis, we now demonstrate formally that the groove is indeed the binding site for hydrophobic ligands. We also identify amino acid positions that are involved in ligand binding and those that control the shape and exposure to solvent of the binding site itself. Some of the mutants showed minimal effects on their binding potential, one showed enhanced binding, and several were completely nonbinding. Particularly notable is Arg-73, which projects into one end of the binding groove and is the sole charged amino acid adjacent to the ligand. Replacing this amino acid with alanine abolished ligand binding and closed the groove to solvent. Arg-73 may therefore have an unexpected dual role in binding site access and anchor for an amphiphilic ligand. These data add weight to the distinctiveness of ZAG among MHC class I-like proteins in addition to providing defined binding-altered mutants for cellular signaling studies and potential medical applications.  相似文献   

11.
V A Konyshev 《Genetika》1983,19(1):17-25
The correlations between genetic codes of amino acids and pathways of synthesis and catabolism of carbon backbone of amino acids are considered. Codes of amino acids which are synthesized from oxoacids of glycolysis, the Krebs cycle and glyoxalic cycle via transamination without any additional chemical reactions, are initiated with guanine (alanine, glutamic and aspartic acids, glycine). Codons of amino acids which are formed on the branches of glycolysis at the level of compounds with three carbon atoms, begin with uracil (phenylalanine, serine, leucine, tyrosine, cysteine, tryptophan). Codes of amino acids formed from aspartate begin with adenine (methionine, isoleucine, threonine, asparagine, lysine, serine), while those of the amino acids formed from the compounds with five carbon atoms (glutamic acid and phosphoribosyl pyrophosphate) begin with cytosine (arginine, proline, glutamine, histidine). The second letter of codons is linked to catabolic pathways of amino acids: most of amino acids entering glycolysis and the Krebs cycle through even-numbered carbon compounds, have adenine and uracil at the second position of codes (A-U type); most of amino acids entering the glycolysis and the Krebs cycle via odd-numbered carbon compounds, have codons with guanine and cytidine at the second position (G-C type). The usage of purine and pyrimidine as the third letter of weak codones in most of amino acids is linked to the enthropy of amino acid formation. A hypothesis claiming that the linear genetic code was assembled from the purine and pyrimidine derivatives which have acted as participants of primitive control of amino acid synthesis and catabolism, is suggested.  相似文献   

12.
Attempts to derive structural features of ligand-binding sites have traditionally involved seeking commonalities at the residue level. Recently, structural studies have turned to atomic interactions of small molecular fragments to extract common binding-site properties. Here, we explore the use of larger ligand elements to derive a consensus binding structure for the ligand as a whole. We superimposed multiple molecular structures from a nonredundant set of adenosine-5'-triphosphate (ATP) protein complexes, using the adenine moiety as template. Clustered binding-site atoms of compatible atomic classes forming attractive contacts with the adenine probe were extracted. A set of atomic clusters characterizing the adenine binding pocket was then derived. Among the clusters are three vertices representing the interactions of adenine atom N6 with its protein-binding niche. These vertices, together with atom C6 of the purine ring system, complete the set of four vertices for the pyramid-like structure of the N6 anchor atom. Also, the sequence relationship for the adenine-binding loop interacting with the C2-N6 end of the conjugated ring system is expanded to include a third hydrophilic cluster interacting with atom N1. A search procedure involving interatomic distances between cluster centers was formulated and applied to seek putative binding sites in test cases. The results show that a consensus network of clusters, based on an adenine probe and an ATP-complexed training set of proteins, is sufficient to recognize the experimental cavity for adenine in a wide spectrum of ligand-protein complexes.  相似文献   

13.
The molecular recognition and discrimination of adenine and guanine ligand moieties in complexes with proteins have been studied using empirical observations on carefully selected crystal structures. The distribution of protein folds that bind these purines has been found to differ significantly from that across the whole PDB, but the most populated architectures and folds are also the most common in three genomes from the three different domains of life. The protein environments around the two nucleic acid bases were significantly different, in terms of the propensities of amino acid residues to be in the binding site, as well as their propensities to form hydrogen bonds to the bases. Plots of the distribution of protein atoms around the two purines clearly show different clustering of hydrogen bond donors and acceptors opposite complimentary acceptors and donors in the rings, with hydrophobic areas below and above the rings. However, the clustering pattern is fuzzy, reflecting the variety of ways that proteins have evolved to recognise the same molecular moiety. Furthermore, an analysis of the conservation of residues in the protein chains binding guanine shows that residues in contact with the base are in general better conserved than the rest of the chain.  相似文献   

14.
Lack of crystal structure data of folate binding proteins has left so many questions unanswered (for example, important residues in active site, binding domain, important amino acid residues involved in interactions between ligand and receptor). With sequence alignment and PROSITE motif identification, we attempted to answer evolutionarily significant residues that are of functional importance for ligand binding and that form catalytic sites. We have analyzed 46 different FRs and FBP sequences of various organisms obtained from Genbank. Multiple sequence alignment identified 44 highly conserved identical amino acid residues with 10 cysteine residues and 12 motifs including ECSPNLGPW (which might help in the structural stability of FR).  相似文献   

15.
Proteins which bind to nucleic acids and regulate their structure and functions are numerous and exceptionally important. Such proteins employ a variety of strategies for recognition of the relevant structural elements in their nucleic acid substrates, some of which have been shown to involve rather subtle interactions which might have been difficult to design from first principles. In the present study, we have explored the preparation of proteins containing unnatural amino acids having nucleobase side chains. In principle, the introduction of multiple nucleobase amino acids into the nucleic acid binding domain of a protein should enable these modified proteins to interact with their nucleic acid substrates using Watson-Crick and other base pairing interactions. We describe the synthesis of five alanyl nucleobase amino acids protected in a fashion which enabled their attachment to a suppressor tRNA, and their incorporation into each of two proteins with acceptable efficiencies. The nucleobases studied included cytosine, uracil, thymine, adenine and guanine, i.e. the major nucleobase constituents of DNA and RNA. Dihydrofolate reductase was chosen as one model protein to enable direct comparison of the facility of incorporation of the nucleobase amino acids with numerous other unnatural amino acids studied previously. The Klenow fragment of DNA polymerase I was chosen as a representative DNA binding protein whose mode of action has been studied in detail.  相似文献   

16.
Adenosine triphosphate (ATP) plays an essential role in energy transfer within the cell. In the form of NAD, adenine participates in multiple redox reactions. Phosphorylation and ATP-hydrolysis reactions have key roles in signal transduction and regulation of many proteins, especially enzymes. In each cell, proteins with many different functions use adenine and its derivatives as ligands; adenine, of course, is present in DNA and RNA. We show that an adenine binding motif, which differs according to the backbone chain direction of a loop that binds adenine (and in one variant by the participation of an aspartate side-chain), is common to many proteins; it was found from an analysis of all adenylate-containing protein structures from the Protein Data Bank. Indeed, 224 protein-ligand complexes (86 different proteins) from a total of 645 protein structure files bind ATP, CoA, NAD, NADP, FAD, or other adenine-containing ligands, and use the same structural elements to recognize adenine, regardless of whether the ligand is a coenzyme, cofactor, substrate, or an allosteric effector. The common adenine-binding motif shown in this study is simple to construct. It uses only (1) backbone polar interactions that are not dependent on the protein sequence or particular properties of amino acid side-chains, and (2) nonspecific hydrophobic interactions. This is probably why so many different proteins with different functions use this motif to bind an adenylate-containing ligand. The adenylate-binding motif reported is present in "ancient proteins" common to all living organisms, suggesting that adenine-containing ligands and the common motif for binding them were exploited very early in evolution. The geometry of adenine binding by this motif mimics almost exactly the geometry of adenine base-pairing seen in DNA and RNA.  相似文献   

17.
Protein-protein interaction and quaternary structure   总被引:3,自引:0,他引:3  
Protein-protein recognition plays an essential role in structure and function. Specific non-covalent interactions stabilize the structure of macromolecular assemblies, exemplified in this review by oligomeric proteins and the capsids of icosahedral viruses. They also allow proteins to form complexes that have a very wide range of stability and lifetimes and are involved in all cellular processes. We present some of the structure-based computational methods that have been developed to characterize the quaternary structure of oligomeric proteins and other molecular assemblies and analyze the properties of the interfaces between the subunits. We compare the size, the chemical and amino acid compositions and the atomic packing of the subunit interfaces of protein-protein complexes, oligomeric proteins, viral capsids and protein-nucleic acid complexes. These biologically significant interfaces are generally close-packed, whereas the non-specific interfaces between molecules in protein crystals are loosely packed, an observation that gives a structural basis to specific recognition. A distinction is made within each interface between a core that contains buried atoms and a solvent accessible rim. The core and the rim differ in their amino acid composition and their conservation in evolution, and the distinction helps correlating the structural data with the results of site-directed mutagenesis and in vitro studies of self-assembly.  相似文献   

18.
19.
Substitutions of individual amino acids in proteins may be under very different evolutionary restraints depending on their structural and functional roles. The Environment Specific Substitution Table (ESST) describes the pattern of substitutions in terms of amino acid location within elements of secondary structure, solvent accessibility, and the existence of hydrogen bonds between side chains and neighbouring amino acid residues. Clearly amino acids that have very different local environments in their functional state compared to those in the protein analysed will give rise to inconsistencies in the calculation of amino acid substitution tables. Here, we describe how the calculation of ESSTs can be improved by discarding the functional residues from the calculation of substitution tables. Four categories of functions are examined in this study: protein–protein interactions, protein–nucleic acid interactions, protein–ligand interactions, and catalytic activity of enzymes. Their contributions to residue conservation are measured and investigated. We test our new ESSTs using the program CRESCENDO, designed to predict functional residues by exploiting knowledge of amino acid substitutions, and compare the benchmark results with proteins whose functions have been defined experimentally. The new methodology increases the Z-score by 98% at the active site residues and finds 16% more active sites compared with the old ESST. We also find that discarding amino acids responsible for protein–protein interactions helps in the prediction of those residues although they are not as conserved as the residues of active sites. Our methodology can make the substitution tables better reflect and describe the substitution patterns of amino acids that are under structural restraints only.  相似文献   

20.
Comparative molecular modeling has been used to generate several possible structures for the G-domain of chloroplast elongation factor Tu (EF-Tu(chl)) based on the crystallographic data of the homologous E. coli protein. EF-Tu(chl) contains a 10 amino acid insertion not present in the E. coli protein and this region has been modeled based on its predicted secondary structure. The insertion appears to lie on the surface of the protein. Its orientation could not be determined unequivocally but several likely structures for the nucleotide binding domain of EF-Tu(chl) have been developed. The effects of the presence of water in the Mg2+ coordination sphere and of the protonation state of the GDP ligand on the conformation of the guanine nucleotide binding site have been examined. Relative binding constants of several guanine nucleotide analogs for EF-Tu(chl) have been obtained. The interactions between EF-Tu(chl) and GDP predicted to be important by the models that have been developed are discussed in relation to the nucleotide binding properties of this factor and to the interactions proposed to be important in the binding of guanine nucleotides to related proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号