首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Steady state kinetics of bovine heart NADH: coenzyme Q oxidoreductase using coenzyme Q with two isoprenoid unit (Q2) or with a decyl group (DQ) show an ordered sequential mechanism in which the order of substrate binding and product release is NADH-Q2 (DQ) -Q2H2 (DQH2)-NAD+ in contrast to the order determined using Q1 (Q1-NADH-NAD+-Q1H2) (Nakashima et al., J. Bioenerg. Biomembr. 34, 11–19, 2002). The effect of the side chain structure of coenzyme Q suggests that NADH binding to the enzyme results in a conformational change, in the coenzyme Q binding site, which enables the site to accept coenzyme Q with a side chain significantly larger than one isoprenoid unit. The side chains of Q2 and DQ bound to the enzyme induce a conformational change in the binding site to stabilize the substrate binding, while the side chain of Q1 (one isoprenoid unit) is too short to induce the conformational change.  相似文献   

2.
A d-specific hydantoinase has been purified to homogeneity from Arthrobacter crystallopoietes DSM 20117 with a yield of 5% related to the crude extract. The active enzyme is a tetramer of 257 kDa consisting of four identical subunits, each with a molecular mass of 60 kDa. Incubation of the enzyme with the metal-chelating agent EDTA had no inhibitory effect, while 8-hydroxyquinoline-5-sulfonic acid resulted in a complete and irreversible inactivation. The purified enzyme contains zinc as cofactor, which could be detected by subjection to direct analysis using inductive/coupled plasma-atomic emission spectrometry. The hydantoinase has a wide substrate specificity for the d-selective cleavage of 5-monosubstituted hydantoin derivatives with aliphatic and aromatic side chains. The Vmax-value for phenylhydantoin is 217 U/mg, the Km-value is 8 mM. Dihydrouracil was found to be a natural substrate (Vmax=35 U/mg). The N-terminal amino acid sequence of the enzyme shows distinct homologies to other metal-dependent cyclic amidases involved in the nucleotide metabolism especially to dihydropyrimidinases as well as to ureases, l- and unselective hydantoinases. Due to these findings, this enzyme has to be considered as a possible link in the evolution to related l-selective and unselective hydantoinases from the genus of Arthrobacter.  相似文献   

3.
恶臭假单胞菌扁桃酸消旋酶的Val22位于20 s环状结构上, 是与底物结合相关的氨基酸之一。其中Val被替换为Arg后酶活性下降了75.9%。除了酶与底物疏水作用减弱以外, 静电排斥作用增强也可能引起活性的下降。利用分子动力学模拟对酶与底物的米氏复合物进行分析, 结果表明: 突变后第22位氨基酸侧链与底物的静电势从0.036 kJ/mol升高至0.124 kJ/mol。这说明氨基酸侧链极性的改变增加了侧链与底物分子之间的静电排斥作用, 因而静电排斥作用也是导致突变体活性下降的原因之一。同时, 突变后系统势能增加了283 kJ/mol, 进一步证实了第22位氨基酸侧链极性和带电性质的改变导致酶与底物结合状态的势能增大, 从而引起活性大幅下降。因此, 将来对酶的结合口袋区域进行理性设计时, 除了考虑空间位阻效应外, 还需考虑疏水作用和静电作用。  相似文献   

4.
Abstract

The endonuclease from Serratia marcescens is a non-specific enzyme that cleaves single and double stranded RNA and DNA. It accepts a phosphorylated pentanucleotide as a minimal substrate which is cleaved in the presence of Mg2+ at the second phosphodiester linkage. The present study is aimed at understanding the role of electrostatic and hydrogen bond interactions in phosphodiester hydrolysis. Towards this objective, six pentadeoxyadenylates with single stereoregular methylphosphonate substitution within this minimal substrate (2a-4b) were synthesized following a protocol described here. These modified oligonucleotides were used as substrates for the Serratia nuclease. The enzyme interaction studies revealed that the enzyme failed to hydrolyze any of the methylphosphonate analogues suggesting the importance of negative charge and/or hydrogen bond acceptors in binding and cleavage of its substrate. Based on these results and available site-directed mutagenesis as well as structural data, a model for nucleic acid binding by Serratia nuclease is proposed.  相似文献   

5.
Abstract

The prolylendopeptidase (PEP) is the proteolytic enzyme, which plays an essential role in the regulation of some processes in central nervous system, such as memory, learning and behavior. It was shown that PEP activity changes at different diseases, like Parkinsons or Alzheimer's diseases, and some PEP inhibitors are used in therapy. At present time the discovery of new types of PEP inhibitors are the actual task.

In this study the structure of PEP active site was analyzed by 3D-QSAR with CoMFA methods using of 12 PEP substrates. The designed pharmacophore model assumes that substrates interact with PEP active site by pyrrolidol ring of proline residue and by hydrogen bonding.

The 3-D-QSAR + CoMFA model of PEP substrates propose that the hydrophobic bonds play the essential role in substrate interaction with enzyme. This model reveals the important steric and electrostatic areas around the molecules and the presence of substituents controls the PEP activity for substrates. Analysis of obtained data allows to assume, that substrate binding in PEP active site causes essential perturbations of substrate structure. This effect mainly depends on chemical nature of the amino acid side chain, located near to proline.  相似文献   

6.
Abstract

A quantitative structure-activity relationship (QSAR) study has been made on some lipoxygenase inhibitors belonging to the series of ω-phenylalkyl hydroxamic acids, ω-naphthylalkyl hydroxamic acids, eicosatetraenoic acids, and 1H.benzimidazole-4-ols. It was found that the hydrophobic character of the molecules and the size of their substituents selectively govern their lipoxygenase inhibitory activity. The enzyme active site possesses a non-heme ferric ion, a hydrophobic domain, and a carboxylic acid binding site. It was found that while the functional group of inhibitors must interact with the ferric ion, the substituent on one side of it would be involved in hydrophobic interaction and that on the other side in van der Waals interaction with the enzyme so leading to an enhancement in the inhibitory activity of the inhibitors.  相似文献   

7.
The enzyme NADPH:protochlorophyllide oxidoreductase (POR) is the key enzyme for light-dependent chlorophyll biosynthesis. It accumulates in dark-grown plants as the ternary enzyme-substrate complex POR-protochlorophyllide a-NADPH. Here, we describe a simple procedure for purification of pigment-free POR from etioplasts of Avena sativa seedlings. The procedure implies differential solubilization with n-octyl-beta-D-glucoside and one chromatographic step with DEAE-cellulose. We show, using pigment and protein analysis, that etioplasts contain a one-to-one complex of POR and protochlorophyllide a. The preparation of 13 analogues of protochlorophyllide a is described. The analogues differ in the side chains of the macrocycle and in part contain zinc instead of the central magnesium. Six analogues with different side chains at rings A or B are active substrates, seven analogues with different side chains at rings D or E are not accepted as substrates by POR. The kinetics of the light-dependent reaction reveals three groups of substrate analogues with a fast, medium and slow reaction. To evaluate the kinetic data, the molar extinction coefficients in the reaction buffer had to be determined. At concentrations above 2 mole substrate/mole enzyme, inhibition was found for protochlorophyllide a and for the analogues.  相似文献   

8.
Full automation of the analysis of spectra is a prerequisite for high-throughput NMR studies in structural or functional genomics. Sequence-specific assignments often form the major bottleneck. Here, we present a procedure that yields nearly complete backbone and side chain resonance assignments starting from a set of heteronuclear three-dimensional spectra. Neither manual intervention, e.g., to correct lists obtained from peak picking before feeding these to an assignment program, nor protein-specific information, e.g., structures of homologous proteins, were required. By combining two earlier published procedures, AUTOPSY [Koradi et al. (1998) J. Magn. Reson., 135, 288–297] and GARANT [Bartels et al. (1996) J. Biomol. NMR, 7, 207–213], with a new program, PICS, all necessary steps from spectra analyses to sequence-specific assignments were performed fully automatically. Characteristic features of the present approach are a flexible design allowing as input almost any combination of NMR spectra, applicability to side chains, robustness with respect to parameter choices (such as noise levels) and reproducibility. In this study, automated resonance assignments were obtained for the 14 kD blue copper protein azurin from P. aeruginosa using five spectra: HNCACB, HNHA, HCCH-TOCSY, 15N-NOESY-HSQC and 13C-NOESY-HSQC. Peaks from these three-dimensional spectra were filtered and calibrated with the help of two two-dimensional spectra: 15N-HSQC and 13C-HSQC. The rate of incorrect assignments is less than 1.5% for backbone nuclei and about 3.5% when side chain protons are also considered.  相似文献   

9.
Abstract

Computations on the energy profiles for Na+ in the gramicidin A (GA) channel have been extended by introducing the effect, previously neglected, of the amino acid side chains of GA, fixed in their most stable conformations. The calculations have been performed in two approximations: 1) with the ethanolamine tail fixed in its most stable conformation, 2) with the tail allowed to optimize its conformation upon the progression of the ion. In both approximations the overall shape of the energy profile is very similar to that obtained in the absence of the side chains. One observes, however, a general lowering of the profile upon the adjunction of the side chains. The analysis of the factors responsible for this energy lowering indicates that it is due essentially to the electrostatic and polarisation components of the interaction which interplay differently, however, in the different parts of the channel. A particular role is attributed in this respect to the tryptophan residues of GA. The role of the 4 tryptophans present, Trp 15, 13, 11 and 9, is individualized by stripping of one of them at a time. The strongest effect on the energy deepening is due to Trp 13 and is particularly prominent in the entrance zone at 14.5Å from the center of the channel. The result indicates the possibility of investigating theoretically the effect on the energy profiles of the substitution of the “natural” side chain by others.  相似文献   

10.
The sunflower seed (Helianthus annuus L.) major peptidase was purified to molecular homogeneity. It is an 80 kDa enzyme with pI of 4.6 and optimal activity at pH 7.5–8.0 and 45–50°C. It is a thiol-dependent aminopeptidase hydrolyzing peptides in a step-by-step manner as cleaving after the N-terminal amino acid residue of the substrate. It requires substrate acyl parts with a free amino group in either α- or β-position and l-configuration of the adjacent carbon atom. The enzyme prefers amino acid residues with bulky hydrophobic side chains at P1-position and its catalytic efficacy is affected by the structure of both P1 and P1′ parts of the substrate.  相似文献   

11.
Aqualysin I is the alkaline serine protease isolated from an extreme thermophile, Thermus aquaticus YT-1. We have analyzed the kinetic properties of aqualysin I, using thirty-one kinds of chromogenic succinyl-tripeptide p-nitroanilides as substrates in the presence of 10% dimethylsulfoxide (DMSO). Aqualysin I hydrolyzed many peptides in a DMSO-containing mixture, however the substrate specificity was different from that in the absence of DMSO. The Km for each peptide was raised by the addition of 10% DMSO. Also, the P3- as well as P2-specificity of aqualysin I was altered. These results suggested that the side chains of the P2 and P3 residues are exposed to the solvent, and the hydrophobic interactions between the side chain of the substrate and the solvent may take a part in the substrate recognition of the enzyme.  相似文献   

12.
《Biophysical journal》2022,121(12):2330-2344
Amyloid precursor protein (APP) is cleaved and processed sequentially by γ-secretase yielding amyloid β (Aβ) peptides of different lengths. Longer Aβ peptides are associated with the formation of neurotoxic plaques related to Alzheimer’s disease. Based on the APP substrate-bound structure of γ-secretase, we investigated the enzyme-substrate interaction using molecular dynamics simulations and generated model structures that represent the sequentially cleaved intermediates during the processing reaction. The simulations indicated an internal docking site providing strong enzyme-substrate packing interaction. In the enzyme-substrate complex, it is located close to the region where the helical conformation of the substrate is interrupted and continues toward the active site in an extended conformation. The internal docking site consists of two non-polar pockets that are preferentially filled by large hydrophobic or aromatic substrate side chains to stabilize binding. Placement of smaller residues such as glycine can trigger a shift in the cleavage pattern during the simulations or results in destabilization of substrate binding. The reduced packing by smaller residues also influences the hydration of the active site and the formation of a catalytically active state. The simulations on processed substrate intermediates and a substrate G33I mutation offer an explanation of the experimentally observed relative increase of short Aβ fragment production for this mutation. In addition, studies on a substrate K28A mutation indicate that the internal docking site opposes the tendency of substrate dissociation due to a hydrophobic mismatch at the membrane boundary caused by K28 during processing and substrate movement toward the enzyme active site. The proposed internal docking site could also be useful for the specific design of new γ-secretase modulators.  相似文献   

13.
Abstract

Three new, water-soluble, N-modified chitosan derivatives containing poly(ethylene glycol), dextran or inulin side chains were used as spacers for enzyme immobilization on a natural silk carrier. Amylolytic enzymes Maltogenase L and Promozyme D2, lipolytic enzyme Resinase HT and a complex of proteolytic enzymes from Streptomyces flavus 197 were immobilized. The activity of the immobilized enzymes and their stability during storage were similar to that obtained with synthetic polyamine—poly(ethylene imine) as a spacer. High operational stability of co-immobilized amylolytic enzymes Maltogenase L and Promozyme D2 in a continuous flow mini-reactor was demonstrated.  相似文献   

14.
Abstract

The influence of base composition (and sequence) on the process of interaction between synthetic polynucleotides and spermine, has been investigated using ultraviolet (including second derivative) spectroscopy, and electric dichroism.

Different binding modes of spermine to poly(dG-dC) as compared to A-T containing polynucleotides, were evidenced. An interaction with the N7 and 06 of guanine is probably partially involved in the former case while simple electrostatic interaction with the phosphate groups would dominate in the latter.

In the intermediate binding range (spermine over DNA phosphate molar ratios Sp/P of the order of 0.1 to 0.2), the complexes with poly(dA) · poly(dT) and those with poly(dA-dT) displayed an important contribution of a permanent dipole moment to the orientation mechanism, as detected by the application of bipolar pulses in electric dichroism experiments. Just prior to precipitation (at Sp/P slightly larger than 0.3), these polynucleotides show electric dichroism and relaxation times characteristics corresponding to toroidal particles formation resulting from a bending of their chains. This implies asymmetric binding to phosphate sites on A-T containing polynucleotides. At low Sp/P ratios, spermine induced a stiffening of poly (dG-dC). No influence of spermine on the orientation mechanism of this polynucleotide was detected for Sp/P values ranging from zero to 0.35. The spermine-induced bending of A-T rich regions thus appears to be essential for DNA condensation into toroidal particles.  相似文献   

15.
The 14 alpha-demethylation of 24,25-dihydrolanosterol (DHL) derivatives having trimmed side chains, 27-nor-DHL, 26,27-dinor-DHL, 25,26,27-trinor-DHL, 24,25,26,27-tetranor-DHL, 23,24,25,26,27-pentanor-DHL and 22,23,24,25,26,27-hexanor-DHL, was studied with the reconstituted lanosterol 14 alpha-demethylase system consisting of cytochrome P-450(14DM) and NADPH-cytochrome P-450 reductase both purified from yeast microsomes. The demethylase catalyzed the 14 alpha-demethylation of the derivatives having the side chains longer than tetranor but the activities for the trinor- and tetranor-derivatives were lower. Kinetic analysis indicated that affinity of the trinor-derivative for the demethylase was considerably higher than that of DHL. The affinities of the 27-nor- and dinor-derivatives were increased by this order and were the intermediates of DHL and the trinor derivative. On the other hand, Vmax values of the demethylase for the DHL derivatives were decreased depending on their side-chain lengths, and the substrate-dependent reduction rate of cytochrome P-450(14DM) was also decreased in the same manner. Based on these observations, it was concluded that interaction of the side chain of lanosterol especially C-25, 26 and 27 with the substrate site of lanosterol 14 alpha-demethylase was necessary for enhancing the catalytic activity of the enzyme. However, this interaction was considered not to be essential for substrate binding.  相似文献   

16.
A gene, treX, encoding a debranching enzyme previously cloned from the trehalose biosynthesis gene cluster of Sulfolobus solfataricus P2 was expressed in Escherichia coli as a His-tagged protein and the biochemical properties were studied. The specific activity of the S. solfataricus debranching enzyme (TreX) was highest at 75°C and pH 5.5. The enzyme exhibited hydrolysing activity toward α-1,6-glycosidic linkages of amylopectin, glycogen, pullulan, and other branched substrates, and glycogen was the preferred substrate. TreX has a high specificity for hydrolysis of maltohexaosyl α-1,6-β-cyclodextrin, indicating the high preference for side chains consisting of 6 glucose residues or more. The enzyme also exhibited 4-α-sulfoxide-glucan transferase activity, catalysing transfer of α-1,4-glucan oligosaccharides from one chain to another. Dimethyl sulfoxide (10%, v/v) increased the hydrolytic activity of TreX. Gel permeation chromatography and sedimentation equilibrium analytical ultracentrifugation revealed that the enzyme exists mostly as a dimer at pH 7.0, and as a mixture of dimers and tetramers at pH 5.5. Interestingly, TreX existed as a tetramer in the presence of DMSO at pH 5.5–6.5. The tetramer showed a 4-fold higher catalytic efficiency than the dimer. The enzyme catalysed not only intermolecular trans-glycosylation of malto-oligosaccharides (disproportionation) to produce linear α-1,4-glucans, but also intramolecular trans-glycosylation of glycogen. The results presented in this study indicated that TreX may be associated with glycogen metabolism by selective cleavage of the outer side chain.  相似文献   

17.
The catabolism of branched chain amino acids, especially valine, appears to play an important role in furnishing building blocks for macrolide and polyether antibiotic biosyntheses. To determine the active site residues of ValDH, we previously cloned, partially characterized, and identified the active site (lysine) of Streptomyces albus ValDH. Here we report further characterization of S. albus ValDH. The molecular weight of S. albus ValDH was determined to be 38 kDa by SDS-PAGE and 67 kDa by gel filtration chromatography indicating that the enzyme is composed of two identical subunits. Optimal pHs were 10.5 and 8.0 for dehydrogenase activity with valine and for reductive amination activity with -ketoisovaleric acid, respectively. Several chemical reagents, which modify amino-acid side chains, inhibited the enzyme activity. To examine the role played by the residue for enzyme specificity, we constructed mutant ValDH by substituting alanine for glycine at position 124 by site-directed mutagenesis. This residue was chosen because it has been considered to be important for substrate discrimination by phenylalanine dehydrogenase (PheDH) and leucine dehydrogenase (LeuDH). The Ala-124–Gly mutant enzyme displayed lower activities toward aliphatic amino acids, but higher activities toward L-phenylalanine, L-tyrosine, and L-methionine compared to the wild type enzyme suggesting that Ala-124 is involved in substrate binding in S. albus ValDH.  相似文献   

18.
A novel enzyme with a specific phenylalanine aminopeptidase activity (ApsC) from Aspergillus niger (CBS 120.49) has been characterized. The derived amino acid sequence is not similar to any previously characterized aminopeptidase sequence but does share similarity with some mammalian acyl-peptide hydrolase sequences. ApsC was found to be most active towards phenylalanine β-naphthylamide (F-βNA) and phenylalanine para-nitroanilide (F-pNA), but it also displayed activity towards other amino acids with aromatic side chains coupled to βNA; other amino acids with nonaromatic side chains coupled to either pNA or βNA were not hydrolyzed or were poorly hydrolyzed. ApsC was not able to hydrolyze N-acetylalanine-pNA, a substrate for acyl-peptide hydrolases.  相似文献   

19.
Abstract

Human lysosomal β-glucosidase (D-glucosyl-acylsphingo-sine glucohydrolase, EC 3.2.1.45) is a membrane-associated enzyme that cleaves the β-glucosidic linkage of glucosylcer-amide (glucocerebroside), its natural substrate, as well as synthetic β-glumsides. Experiments with cultured cells suggest that in vivo this glycoprotein requires interaction with negatively charged lipids and a small acidic protein, SAP-2, for optimal glucosylceramide hydrolytic rates. In vitro, detergents (Triton? X-100 or bile acids) or negatively charged gangliosides or phos-pholipids and one of several “activator proteins” increase hydrolytic rate of lipid and water-soluble substrates. Using such in vitro assay systems and active site-directed covalent inhibitors, kinetic and structural properties of the active site have been elucidated. The defective activity of this enzyme leads to the variants of Gaucher disease, the most prevalent lysosomal storage disease. The nonneuronopathic (type 1) and neuronopathic (types 2 and 3) variants of this inherited (autosomal recessive) disease but panethnic, but type 1 is most prevalent in the Ashkenazi Jewish population. Several missense mutations, identified in the structural gene for lysosomal β-glucosidase from Gaucher disease patients, are presumably casual to the specifically altered post-translational oligosaccharide processing or stability of the enzyme as well as the alterecA in vitro kinetic properties of the residual enzyme from patient tissues.  相似文献   

20.
Prothrombinase converts prothrombin to thrombin via cleavage at Arg320 followed by cleavage at Arg271. Exosite-dependent binding of prothrombin to prothrombinase facilitates active site docking by Arg320 and initial cleavage at this site. Precise positioning of the Arg320 site for cleavage is implied by essentially normal cleavage at Arg320 in recombinant prothrombin variants bearing additional Arg side chains either one or two residues away. However, mutation of Arg320 to Gln reveals that prothrombinase can cleave prothrombin following Arg side chains shifted by as many as two residues N-terminal to the 320 position at near normal rates. Further repositioning leads to a loss in cleavage at this region with an abrupt shift toward slow cleavage at Arg271. In contrast, the binding constant for the active site docking step is strongly dependent on the sequence preceding the scissile bond as well as position. Large effects on binding only yield minor changes in rate until the binding constant passes a threshold value. This behavior is expected for a substrate that can engage the enzyme through mutually exclusive active site docking reactions followed by cleavage to yield different products. Cleavage site specificity as well as the ordered action of prothrombinase on its compound substrate is regulated by the thermodynamics of active site engagement of the individual sites as well as competition between alternate cleavage sites for active site docking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号