首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

Vinblastine (VLB) and its derivatives have been used for clinical first-line drugs to treat various cancers. Due to the resistance and serious side effects from using VLB and its derivatives, there is a need to discover and develop novel VLB derivatives with high activity against cancer cells. In order to better discover and develop new VLB derivatives, we need to study the structural basis of VLB's anti-cancer cytotoxicity and the mechanism of its interaction with α,β-tubulins. Based on the crystal structure of α,β-microtubule complex protein, the molecular dynamics method including the sampling PMF method was used to study the variation of dissociation free energy (ΔG) of α,β-tubulins under different system conditions, and then from which to study the mechanism of the interaction between VLB and α,β-tubulins. The obtained results show that the dissociation of pure α,β-tubulins requires 197.8?kJ·mol?1 for ΔG. When the VLB molecule exists between the interface of α,β-tubulins, the dissociation ΔG of α,β-tubulins reaches 220.5?kJ·mol?1, which is greater than that of pure α,β-tubulin. The VLB molecule is formed by connecting a vindoline moiety (VM) molecule with a catharanthine moiety (CM) molecule through a carbon-carbon bond, which is a larger molecule. When the CM molecule exists in the middle of α,β-tubulin interface, the dissociation ΔG of α,β-tubulins is 46.2?kJ·mol?1, during which the CM moves with β-tubulin. When the VM molecule exists between the middle of α,β-tubulin interface, the dissociation ΔG of α,β-tubulins is 86.7?kJ·mol?1, during which it moves with α-tubulin. Therefore, the VLB molecule is like a double-sides tape to stick α-tubulin and β-tubulin together. The VLB molecule intervenes the dynamic equilibrium between dissociation and aggregation of α-tubulin and β-tubulin by a double-sides sticking mechanism to exert high activity with toxicity against cancer cell. Besides, our results demonstrate that VLB has its structural basis for anticancer cytotoxicity due to its two compositions composed of a CM molecule and a VM molecule although they have little toxicity against cancer cell alone.  相似文献   

2.
20 Analogues of sporogen AO-1 were synthesized by chemical modification at α,β-unsaturated carbonyl, 3-hydroxyl and vinylic methyl groups of sporogen AO-1 precursor, and were evaluated for their cytotoxic activities against human oral epidermoid carcinoma (KB) and human small cell lung (NCI-H187) cancer cell lines. Structure-activity relationship study indicated the importance of α,β-unsaturated carbonyl moiety for both cancer cell lines. Vinylic methyl and R-configuration of 3-hydroxyl group were crucial for cytotoxicity toward KB cells. In contrast, conversion of vinylic methyl and 3-hydroxyl groups to ketone moieties afforded triketone 19 which displayed comparable cytotoxicity against NCI-H187 cells lines to sporogen AO-1, and was more potent than ellipticine, a standard drug. Interestingly, compound 19 was weakly cytotoxic toward Vero cells, whereas sporogen AO-1 showed strong cytotoxicity.  相似文献   

3.
Microtubules are dynamic polymers that occur in eukaryotic cells and play important roles in cell division, motility, transport and signaling. They form during the process of polymerization of α- and β-tubulin dimers. Tubulin is a significant and heavily researched molecular target for anticancer drugs. Combretastatins are natural cis-stilbenes that exhibit cytotoxic properties in cultured cancer cells in vitro. Combretastatin A-4 (3′-hydroxy-3,4,4′, 5-tetramethoxy-cis-stilbene; CA-4) is a potent cytotoxic cis-stilbene that binds to β-tubulin at the colchicine-binding site and inhibits tubulin polymerization. The prodrug CA-4 phosphate is currently in clinical trials as a chemotherapeutic agent for cancer treatment. Numerous series of stilbene analogs have been studied in search of potent cytotoxic agents with the requisite tubulin-interactive properties. Microtubule-interfering agents include numerous CA-4 and transresveratrol analogs and other synthetic stilbene derivatives. Importantly, these agents are active in both tumor cells and immature endothelial cells of tumor blood vessels, where they inhibit the process of angiogenesis. Recently, computer-aided virtual screening was used to select potent tubulin-interactive compounds. This review covers the role of stilbene derivatives as a class of antitumor agents that act by targeting microtubule assembly dynamics. Additionally, we present the results of molecular modeling of their binding to specific sites on the α- and β-tubulin heterodimer. This has enabled the elucidation of the mechanism of stilbene cytotoxicity and is useful in the design of novel agents with improved anti-mitotic activity. Tubulin-interactive agents are believed to have the potential to play a significant role in the fight against cancer.  相似文献   

4.
Pironetin is an α-tubulin-binding natural product with potent antiproliferative activity against several cancer cell lines that inhibits cell division by forming a covalent adduct with α-tubulin via a Michael addition into the natural product’s α,β-unsaturated lactone. We designed and prepared analogs carrying electron-withdrawing groups at the α-position (C2) of the α,β-unsaturated lactone with the goal to generate potent and selective binding analogs. We prepared derivatives containing halogens, a phenyl, and a methyl group at the C2 position to evaluate the structure-activity relationship at this position. Testing of the analogs in ovarian cancer cell lines demonstrated 100–1000-fold decreased antiproliferative activity.  相似文献   

5.
Microtubules are significant therapeutic targets for the treatment of cancer, where suppression of microtubule dynamicity by drugs such as paclitaxel forms the basis of clinical efficacy. Peloruside A, a macrolide isolated from New Zealand marine sponge Mycale hentscheli, is a microtubule-stabilizing agent that synergizes with taxoid drugs through a unique site and is an attractive lead compound in the development of combination therapies. We report here unique allosteric properties of microtubule stabilization via peloruside A and present a structural model of the peloruside-binding site. Using a strategy involving comparative hydrogen-deuterium exchange mass spectrometry of different microtubule-stabilizing agents, we suggest that taxoid-site ligands epothilone A and docetaxel stabilize microtubules primarily through improved longitudinal interactions centered on the interdimer interface, with no observable contributions from lateral interactions between protofilaments. The mode by which peloruside A achieves microtubule stabilization also involves the interdimer interface, but includes contributions from the α/β-tubulin intradimer interface and protofilament contacts, both in the form of destabilizations. Using data-directed molecular docking simulations, we propose that peloruside A binds within a pocket on the exterior of β-tubulin at a previously unknown ligand site, rather than on α-tubulin as suggested in earlier studies.  相似文献   

6.
Spiramine C–D, the atisine-type diterpenoid alkaloids isolated from the Chinese herbal medicine Spiraea japonica complex, are shown to have anti-inflammatory effects in vitro. In this study, we report that spiramine derivatives of spiramine C–D bearing α,β-unsaturated ketone induce apoptosis of Bax−/−/Bak−/− MEFs cell, which is positively corresponding their cytotoxicity of tumor cell lines including multidrug resistance MCF-7/ADR. The results indicated that oxazolidine ring is necessary, and derivatives bearing double ‘Michael reaction acceptor’ group would significantly increased activities both of inducing apoptosis of Bax−/−/Bak−/− cells and cytotoxicity of tumor cells. The result indicated that spiramine derivative with α,β-unsaturated ketone group is a new anti-cancer agent with a capability of inducing apoptosis of cancer cells in Bax/Bak-independent manner.  相似文献   

7.
BackgroundDNA topoisomerase (Topo) inhibition plays key role in breast cancer treatment. Stephania hainanensis H. S. Lo et Y. Tsoong (S. hainanensis), a Li nationality plant that has abundant aporphine alkaloids, can inhibit Topo.PurposeTo identify a dual Topo inhibitor, a deep and systematic study of active aporphine alkaloids in S. hainanensis and their mechanisms of inhibiting breast cancer proliferation and Topo activity are essential.Study designThis study aimed to assess the anti-breast cancer and Topo inhibitory activities of oxocrebanine and explore the underlying mechanisms.MethodsThe growth inhibitory activities of 12 compounds in S. hainanensis were screened by MTT assay in MCF-7, SGC-7901, HepG-2 cells, and compared with the effects on human normal mammary epithelial MCF-10A cells as non cancer control cells. The Topo inhibitory activity was assessed by DNA relaxation and unwinding assays, kDNA decatenation assay and western blot. Cell cycle and autophagy analyses were carried out with flow cytometry and staining. Acridine orange staining and α-tubulin morphology were observed by fluorescence microscopy. Western blot was used to examine microtubule assembly dynamics and the expression levels of key proteins associated with DNA damage, autophagy and mitotic arrest.ResultsOxocrebanine was the anti-breast cancer active alkaloid in S. hainanensis. It exhibited the best inhibitory effect on MCF-7 cells with an IC50 of 16.66 μmol/l, and had only weak effect on the proliferation of MCF-10A cells. Oxocrebanine inhibited Topo I and II α in a cell-free system and in MCF-7 cells. The DNA unwinding assay suggested that oxocrebanine intercalated with DNA as a catalytic inhibitor. Oxocrebanine regulated the levels of Topo I and IIα and DNA damage-related proteins. Oxocrebanine led to the mitotic arrest, and these effects occurred through both p53-dependent and p53-independent pathways. Oxocrebanine induced autophagy, abnormal α-tubulin morphology and stimulated enhanced microtubule dynamics.ConclusionOxocrebanine was the anti-breast cancer active aporphine alkaloid in S. hainanensis. Oxocrebanine was a Topo I/IIα dual inhibitor, catalytic inhibitor and DNA intercalator. Oxocrebanine caused DNA damage, autophagy, and mitotic arrest in MCF-7 cells. Oxocrebanine also disrupted tubulin polymerization. Accordingly, oxocrebanine held a great potential for development as a novel dual Topo inhibitor for effective breast cancer treatment.  相似文献   

8.
Neurogenesis has been shown to occur in the cerebral cortex in adult rats after ischemic stroke. The origin of the newborn neurons is largely unknown. This study aimed to explore cell division in the poststroke penumbral cortex. Adult male Wistar rats were subjected to photothrombotic ring stroke. After repeated delivery of the DNA duplication marker BrdU, the animals were sacrificed at various times poststroke. BrdU was detected by immunohistochemistry/immunofluorescence labeling, as was the M-phase marker Phos H3 and the spindle components α-tubulin/γ-tubulin. DNA damage was examined by TUNEL staining. Cell type was ascertained by double immunolabeling with the neuronal markers Map-2ab/β-tubulin III and NeuN/Hu or the astrocyte marker GFAP. From 16h poststroke, BrdU-immunolabeled cells appeared in the penumbral cortex. From 24h, Phos H3 was colocalized with BrdU in the nuclei. Mitotic spindles immunolabeled by α-tubulin/γ-tubulin appeared inside the cortical cells containing BrdU-immunopositive nuclei. Unexpectedly, the markers of neuronal differentiation, Map-2ab/β-tubulin III/NeuN/Hu, were expressed in the Phos H3-immunolabeled cells, and NeuN was detected in some cells containing spindles. This study suggests that in response to a sublethal ischemic insult, endogenous cells with neuronal immunolabeling may duplicate their nuclear DNA and commit cell mitosis to generate daughter neurons in the penumbral cortex in adult rats.  相似文献   

9.
Compounds having α,β-unsaturated lactones display a variety of biological activities. Many research groups have tested both natural and unnatural α,β-unsaturated lactones for as-yet undiscovered biological properties. We synthesized α,β-unsaturated lactones with various substituents at the δ-position and studied their immunosuppressive effects, that is, the inhibition of Interleukin-2 (IL-2) production. Among the compounds synthesized, the benzofuran-substituted α,β-unsaturated lactone 4h showed the best inhibitory activity toward IL-2 production in Jurkat e6-1 T lymphocytes (IC(50)=66.9 nM) without cytotoxicity at 10 μM. The results indicated that 4h may be useful as a potent immunosuppressive agent, as well as in IL-2-related studies.  相似文献   

10.
目的研究骨髓间充质干细胞(mesenchymal stem cell,MSC)条件培养液对小鼠MII卵母细胞的孤雌激活作用及胚胎发育能力。方法分离、培养小鼠MSC,获取MSC条件培养液(conditioned medium of MSC,CM)。通过促排技术获取小鼠MII卵母细胞,分别采用CM、7%乙醇、IVF方法激活,体视显微镜下观察原核形成及囊胚形成率。在CM激活后不同时间点,利用α/β-tubulin抗体标记纺锤体,激光共聚焦显微镜下观察有/无细胞松弛素B(CB)存在时纺锤体的运动变化。结果 CM可以激活小鼠MII卵母细胞,最佳刺激时间为40min,激活率达到95.4%,囊胚形成率为62%,与7%乙醇组比较无显著差异,但明显低于IVF组(95.4%vs.100%;62%vs.88%,P0.01)。CB可以抑制纺锤体的旋转,阻止第二极体的排出,促进二倍体孤雌胚形成,提高囊胚形成率(62%vs.9%,P0.01)。结论 CM能有效激活小鼠MII卵母细胞并促进孤雌发育。  相似文献   

11.
Laminin‐332 (Ln‐332) is an extracellular matrix molecule that regulates cell adhesion, spreading, and migration by interaction with cell surface receptors such as α3β1 and α6β4. Previously, we developed a function‐blocking monoclonal antibody against rat Ln‐332, CM6, which blocks hemidesmosome assembly induced by Ln‐332‐α6β4 interactions. However, the location of its epitope on Ln‐332 has remained unclear. In this study, we show that the CM6 epitope is located on the laminin G‐like (LG)2 module of the Ln‐332 α3 chain. To specify the residues involved in this epitope, we produced a series of GST‐fused α3 LG2 mutant proteins in which rat‐specific acids were replaced with human acids by a site‐directed mutagenesis strategy. CM6 reactivity against these proteins showed that CM6 binds to the 1089NERSVR1094 sequence of rat Ln‐332 LG2 module. In a structural model, this sequence maps to an LG2 loop sequence that is exposed to solvent according to predictions, consistent with its accessibility to antibody. CM6 inhibits integrin‐dependent cell adhesion on Ln‐332 and inhibits cell spreading on both Ln‐332 and recombinant LG2 (rLG2; but not rLG3), suggesting the presence of an α3β1 binding site on LG2. However, we were unable to show that rLG2 supports adhesion in standard assays, suggesting that LG2 may contain a “weak” integrin binding site, only detectable in spreading assays that do not require washes. These results, together with our previous findings, indicate that binding sites for α3β1 and α6β4 are closely spaced in the Ln‐332 LG domains where they regulate alternative cell functions, namely adhesion/migration or hemidesmosome anchoring. J. Cell. Physiol. 223:541–548, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

12.
The anticancer potential of a synthetic 2,3-diarylindole (PCNT13) has been demonstrated in A549 lung cancer cells by inducing both apoptosis and autophagic cell death. In this report, we designed to connect a fluorophore to the compound via a hydrophilic linker for monitoring intracellular localization. The best position for linker attachment was identified from cytotoxicity and effect on cell morphology of newly synthesized PCNT13 derivatives bearing hydrophilic linker. Cytotoxicity and effect on cell morphology related to the parental compound were used to identify the optimum position for linker attachment in the PCNT13 chemical structure. The fluorophore-PCNT13 conjugate was found to localize in the cytoplasm. Microtubules were found to be one of the cytosolic target proteins of PCNT13, as the compound could inhibit tubulin polymerization in vitro. A molecular docking study revealed that PCNT13 binds at the colchicine binding site on the α/β-tubulin heterodimer. The effect of PCNT13 on microtubule dynamics caused cell cycle arrest in the G2/M phase as analyzed by flow cytometric analysis.  相似文献   

13.
Paclitaxel (PTX) is used to treat various cancers, but it also causes serious side effects and resistance. To better design similar compounds with less toxicity and more activity against drug-resistant tumors, it is important to clearly understand the PTX-binding pocket formed by the key residues of active sites on β-tubulin. Using a docking method, molecular dynamics (MD) simulation and density functional theory (DFT), we identified some residues (such as Arg278, Asp26, Asp226, Glu22, Glu27, His229, Arg369, Lys218, Ser277 and Thr276) on β-tubulin that are the active sites responsible for interaction with PTX. Another two residues, Leu371 and Gly279, also likely serve as active sites. Most of these sites contact with the “southern hemisphere” of PTX; only one key residue interacts with the “northern hemisphere” of PTX. These key residues can be divided into four groups, which serve as active compositions in the formation of an active pocket for PTX binding to β-tubulin. This active binding pocket enables a very strong interaction (the strength is predicted to be in the range of −327.8 to −365.7 kJ mol−1) between β-tubulin and PTX, with various orientated conformations. This strong interaction means that PTX possesses a high level of activity against cancer cells, a result that is in good agreement with the clinical mechanism of PTX. The described PTX pocket and key active residues will be applied to probe the mechanism of tumor cells resistant to PTX, and to design novel analogs with superior properties.  相似文献   

14.
The α1- and α2-tubulin encoding genes were cloned from a goldfish genomic DNA library. α1- and α2-tubulin RNA expression was examined in developing and adult retinas. These studies demonstrated increased α1-tubulin RNA in presumptive ganglion cells that grow axons early in retinal development and in adult retinal ganglion cells whose optic axons had been damaged. The α2-tubulin RNA was undetectable in developing retina and constitutively expressed in adult retinal ganglion cells regardless of optic nerve crush. To determine if these changes in α1-tubulin RNA reflected changes in α1-tubulin promoter activity, we introduced into zebrafish embryos and adult goldfish retinal explants expression vectors harboring the α1-tubulin gene's promoter. These studies showed that the α1-tubulin promoter confers a developmentally regulated, neuron-restricted pattern of reporter gene expression in vivo and its activity is increased in adult retinal neurons induced to regenerate their axons. Promoter deletions defined regions of α1-tubulin DNA necessary for this pattern of expression. These results suggest that DNA sequences necessary for α1-tubulin gene induction during central nervous system development and regeneration are contained within the α1-tubulin gene's 5′-flanking DNA and that this promoter will be useful for identifying these elements and their DNA binding proteins. © 1998 John Wiley & Sons, Inc. J Neurobiol 37: 429–440, 1998  相似文献   

15.
In the heart, nitric oxide (NO) modulates contractile function; however, the mechanisms responsible for this effect are incompletely understood. NO can elicit effects via a variety of mechanisms including S-nitrosylation and stimulation of cGMP synthesis by soluble guanylate cyclase (sGC). sGC is a heterodimer comprised of a β(1)- and an α(1)- or α(2)-subunit. sGCα(1)β(1) is the predominant isoform in the heart. To characterize the role of sGC in the regulation of cardiac contractile function by NO, we compared left ventricular cardiac myocytes (CM) isolated from adult mice deficient in the sGC α(1)-subunit (sGCα(1)(-/-)) and from wild-type (WT) mice. Sarcomere shortening under basal conditions was less in sGCα(1)(-/-) CM than in WT CM. To activate endogenous NO synthesis from NO synthase 3, CM were incubated with the β(3)-adrenergic receptor (β(3)-AR) agonist BRL 37344. BRL 37344 decreased cardiac contractility in WT CM but not in sGCα(1)(-/-) myocytes. Administration of spermine NONOate, an NO donor compound, did not affect sarcomeric shortening in CM of either genotype; however, in the presence of isoproterenol, addition of spermine NONOate reduced sarcomere shortening in WT but not in sGCα(1)(-/-) CM. Neither BRL 37344 nor spermine NONOate altered calcium handling in CM of either genotype. These findings suggest that sGCα(1) exerts a positive inotropic effect under basal conditions, as well as mediates the negative inotropic effect of β(3)-AR signaling. Additionally, our work demonstrates that sGCα(1)β(1) is required for NO to depress β(1)/β(2)-AR-stimulated cardiac contractility and that this modulation is independent of changes in calcium handling.  相似文献   

16.
Clinical association studies have implicated high expression of class III β-tubulin as a predictive factor for lower response rates and reduced overall survival in patients receiving tubulin binding drugs, most notably the taxanes. Because of the implications, we examined a series of key vinblastine analogs that emerged from our studies in functional cell growth inhibition assays for their sensitivity to high expression of class III β-tubulin (human non-small cell lung cancer cell line A549 vs taxol-resistant A549-T24). Unlike taxol, vinblastine and a set of key analogs 310 did not exhibit any loss in sensitivity toward A549-T24. The results suggest that vinblastine and related analogs are not likely prone to resistance derived from high expression of class III β-tubulin unlike the taxanes. Most significant are the results with 46, a subset of 20′ amide vinblastine analogs. They match or exceed the potency of vinblastine and they display more potent activity against taxol-resistant A549-T24 than even wild type A549 cells (1.2–2-fold), complementing our prior observations that they also display no sensitivity to overexpression of Pgp (HCT116/VM46 vs HCT116) and are not subject to resistance derived from Pgp efflux.  相似文献   

17.
We have discovered O6-benzyl glaziovianin A, which showed stronger inhibition of microtubule polymerization (IC50 = 2.1 μM) than known α,β-tubulin inhibitors, such as colchicine and glaziovianin A. Also, we performed competition binding experiments of O6-benzyl glaziovianin A and revealed that O6-benzyl glaziovianin A binds to the colchicine binding site with high affinity. It is interesting that glaziovianin A derivatives change their mode of action in benzylation at the O6 (α,β-tubulin inhibitor) or O7 (γ-tubulin-specific inhibitor) position.  相似文献   

18.
A series of certain benzyl/phenethyl thiazolidinone-indole hybrids were synthesized for the study of anti-proliferative activity against A549, NCI-H460 (lung cancer), MDA-MB-231 (breast cancer), HCT-29 and HCT-15 (colon cancer) cell lines by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). We found that compound G37 displayed highest cytotoxicity with IC50 value of 0.92 ± 0.12 µM towards HCT-15 cancer cell line among all the synthesized compounds. Moreover, compound G37 was also tested on normal human lung epithelial cells (L132) and was found to be safe in contrast to HCT-15 cells. The lead compound G37 showed significant G2/M phase arrest in HCT-15 cells. Additionally, compound G37 significantly inhibited tubulin polymerization with IC50 value of 2.92 ± 0.23 µM. Mechanistic studies such as acridine orange/ethidium bromide (AO/EB) dual staining, DAPI nuclear staining, annexinV/propidium iodide dual staining, clonogenic growth inhibition assays inferred that compound G37 induced apoptotic cell death in HCT-15 cells. Moreover, loss of mitochondrial membrane potential with elevated intracellular ROS levels was observed by compound G37. These compounds bind at the active pocket of the α/β-tubulin with higher number of stable hydrogen bonds, hydrophobic and arene-cation interactions confirmed by molecular modeling studies.  相似文献   

19.
It is now emerging that many proteins are regulated by a variety of covalent modifications. Using microcystin-affinity chromatography we have purified multiple protein phosphatases and their associated proteins from Arabidopsis thaliana. One major protein purified was the histone deacetylase HDA14. We demonstrate that HDA14 can deacetylate α-tubulin, associates with α/β-tubulin and is retained on GTP/taxol-stabilized microtubules, at least in part, by direct association with the PP2A-A2 subunit. Like HDA14, the putative histone acetyltransferase ELP3 was purified on microcystin-Sepharose and is also enriched at microtubules, potentially functioning in opposition to HDA14 as the α-tubulin acetylating enzyme. Consistent with the likelihood of it having many substrates throughout the cell, we demonstrate that HDA14, ELP3 and the PP2A A-subunits A1, A2 and A3 all reside in both the nucleus and cytosol of the cell. The association of a histone deacetylase with PP2A suggests a direct link between protein phosphorylation and acetylation.  相似文献   

20.
Bispecific antibodies (biAbs) that mediate cytotoxicity by recruiting and activating endogenous immune cells are an emerging class of next-generation antibody therapeutics. Of particular interest are biAbs of relatively small size (~50 kDa) that can redirect cytotoxic T cells through simultaneous binding of tumor cells. Here we describe a conceptually unique class of biAbs in which the tumor cell specificity of a humanized antibody fragment that recognizes CD3 on T cells is chemically programmed through a C-terminal selenocysteine (Sec) residue. We demonstrate that through chemically programmed specificity for integrin α(4)β(1) or folate receptor 1 (FOLR1), and common specificity for CD3, these hybrid molecules exert potent and specific in vitro and ex vivo cytotoxicity toward tumor cell lines and primary tumor cells in the presence of primary T cells. Importantly, the generic nature of chemical programming allows one to apply our approach to virtually any specificity, promising a broad utility of chemically programmed biAbs in cancer therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号