首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
2.
Cauliflower mosaic virus (CaMV) forms two types of inclusion bodies within infected plant cells: numerous virus factories, which are the sites for viral replication and virion assembly, and a single transmission body (TB), which is specialized for virus transmission by aphid vectors. The TB reacts within seconds to aphid feeding on the host plant by total disruption and redistribution of its principal component, the viral transmission helper protein P2, onto microtubules throughout the cell. At the same time, virions also associate with microtubules. This redistribution of P2 and virions facilitates transmission and is reversible; the TB reforms within minutes after vector departure. Although some virions are present in the TB before disruption, their subsequent massive accumulation on the microtubule network suggests that they also are released from virus factories. Using drug treatments, mutant viruses, and exogenous supply of viral components to infected protoplasts, we show that virions can rapidly exit virus factories and, once in the cytoplasm, accumulate together with the helper protein P2 on the microtubule network. Moreover, we show that during reversion of this phenomenon, virions from the microtubule network can either be incorporated into the reverted TB or return to the virus factories. Our results suggest that CaMV factories are dynamic structures that participate in vector transmission by controlled release and uptake of virions during TB reaction.  相似文献   

3.
Conversion of the rod-like tobacco mosaic virus (TMV) virions into “ball-like particles” by thermal denaturation at 90–98?°C had been described by R.G. Hart in 1956. We have reported recently that spherical particles (SPs) generated by thermal denaturation of TMV at 94–98?°C were highly stable, RNA-free, and water-insoluble. The SPs were uniform in shape but varied widely in size (53–800?nm), which depended on the virus concentration. Here, we describe some structural characteristics of SPs using circular dichroism, fluorescence spectroscopy, and Raman spectroscopy. It was found that the structure of SPs protein differs strongly from that of the native TMV and is characterized by coat protein subunits transition from mainly (about 50%) α-helical structure to a structure with low content of α-helices and a significant fraction of β-sheets. The SPs demonstrate strong reaction with thioflavin T suggesting the formation of amyloid-like structures.  相似文献   

4.
Cauliflower mosaic virus (CaMV) replicated in protoplasts and in inoculated leaves of the non-host, cotton (Gossypium hirsutum, L.). Protoplasts prepared from suspension-cultured cotton cells were infected by incubation with liposome-encapsulated CaMV virions. During a 1-week culture period the amount of CaMV nucleic acid as detected by nucleic acid hybridization in the protoplasts increased significantly regardless of whether or not the protoplasts contained vacuoles. In leaves inoculated with CaMV virions or CaMV DNA, viral DNA sequences were found by leaf skeleton hybridization to be located in small circular areas. DNA extracted from ultracentrifugal pellets of homogenates of inoculated leaves contained circular, gapped CaMV DNA only when inocula contained CaMV virions, CaMV DNA, or partial nested dimer CaMV plasmid DNA. When plants had been heavily watered, the CaMV DNA recovered contained degraded CaMV DNA. The results suggest that the host range limitation for CaMV is not due to an inability to replicate or spread locally in inoculated leaves.  相似文献   

5.
6.
Pfeiffer T  Pisch T  Devitt G  Holtkotte D  Bosch V 《FEBS letters》2006,580(15):3775-3778
In certain cell systems, exchange of the human immunodeficiency virus (HIV) Env signal peptide (SP) sequence with that of heterologous SPs has been shown to increase gp120 transport and secretion. Here we demonstrate that exchange of the HIV-Env-SP with those from erythropoietin or tissue plasminogen activator in the proviral context does not increase wild-type membrane-bound Env expression or incorporation into released virions. In fact, virion infectivity was decreased. These infectivity decreases were largely due to effects on Env transport and/or function and only to a minor extent to cis effects as a result of the sequence exchanges themselves. Thus, in fact, it is not advantageous to employ heterologous SPs to achieve high-level expression of functional cell surface membrane- or virion-associated HIV-Env.  相似文献   

7.
8.
The nightly construction of a sleeping platform (SP) or “nest” is widely regarded as a universal behavior among great apes, yet SP structural morphology has been incompletely quantified to date. This is in part due to the inherent difficulties of gathering empirical data on arboreally sited SPs. I gathered quantitative structural data on SPs (n?=?65) at the Toro-Semliki Wildlife Reserve from May to June 2008 and from August 2010 to January 2011. I measured SP length (semi-major axis length), width (semi-minor axis length), radii (length from the surface center to the rim edge 45° from the axis), depth (width of the concavity from the surface center to the parallel rim), and thickness (ventral center to the dorsal underside of the SP). SP complexity was defined with a scored index. SP complexity was found to be correlated with SP circumference, surface area, mass, proportion of soft leafy material to hard woody material, number of frame support branches used in its construction, and other measures that are argued to index “comfort.” In addition, the height of the tree canopy above the SP was negatively correlated with SP complexity. Greater complexity (and therefore stability) is argued to maintain SP integrity, stability and restraint in the face of greater wind speeds, thereby reducing the probability of falls. Given the observation that males site SPs lower than females (Fruth and Hohmann, Ethology 94:113–126, 1994; Brownlow et al., Am J Primatol 55:49–55, 2001), and that SP diameters were greater for SPs sited low in the canopy at Semliki, it is inferred that more massive males benefit from lower climbing expenses and greater stability. These data support Baldwin and colleagues’ (Primates 22:474–486, 1981) hypothesis that the principal advantage of SPs over open-branch sleeping sites is the greater stability required by large-bodied great apes.  相似文献   

9.
Cauliflower mosaic virus (CaMV) DNA exists under different topological forms in infected plants. First, the population of encapsidated CaMV DNA molecules appears heterogeneous when analysed by gel electrophoresis. The electron microscopic study reported here reveals that CaMV virion DNA contains simple and multiple topological knots. Second, a supercoiled DNA form never found in virions exists as a chromatin-like nucleoprotein complex with nucleosome subunits in the nuclei of infected leaves. The compaction ratio of the minichromosomes is compatible with the nucleosomal structure, the number of nucleosomes (41.0 +/- 2.5) is in keeping with the length of the viral genome.  相似文献   

10.
Cortactin is an actin-binding protein that is enriched within the lamellipodia of motile cells and in neuronal growth cones. Here, we report that cortactin is localized with the actin-related protein (Arp) 2/3 complex at sites of actin polymerization within the lamellipodia. Two distinct sequence motifs of cortactin contribute to its interaction with the cortical actin network: the fourth of six tandem repeats and the amino-terminal acidic region (NTA). Cortactin variants lacking either the fourth tandem repeat or the NTA failed to localize at the cell periphery. Tandem repeat four was necessary for cortactin to stably bind F-actin in vitro. The NTA region interacts directly with the Arp2/3 complex based on affinity chromatography, immunoprecipitation assays, and binding assays using purified components. Cortactin variants containing the NTA region were inefficient at promoting Arp2/3 actin nucleation activity. These data provide strong evidence that cortactin is specifically localized to sites of dynamic cortical actin assembly via simultaneous interaction with F-actin and the Arp2/3 complex. Cortactin interacts via its Src homology 3 (SH3) domain with ZO-1 and the SHANK family of postsynaptic density 95/dlg/ZO-1 homology (PDZ) domain-containing proteins, suggesting that cortactin contributes to the spatial organization of sites of actin polymerization coupled to selected cell surface transmembrane receptor complexes.  相似文献   

11.
Carnation etched ring virus (CERV) DNA comprises 7932 bp. CERV primer binding sites and overall genome organization are similar to those of the related cauliflower mosaic virus (CaMV). The six open reading frames of CERV showed amino acid homology (50-80%) with CaMV ORFs I-VI; no homologues of CaMV ORFs VII or VIII were found. CERV ORFs 1-5 interface each other with the sequence ATGA. The comparison of CERV ORF5 with CaMV ORFV highlighted regions which show homologies to retrovirus gag/pol protease, RNase H and DNA polymerase domains; the possibility that the DNA polymerase domain comprises two subdomains, operating off different templates, is discussed. Both CERV and CaMV ORFs I have sequence homology to tobacco mosaic virus P30 and plastocyanin.  相似文献   

12.
The cauliflower mosaic virus (CaMV) has an icosahedral capsid composed of the viral protein P4. The viral product P3 is a multifunctional protein closely associated with the virus particle within host cells. The best-characterized function of P3 is its implication in CaMV plant-to-plant transmission by aphid vectors, involving a P3-virion complex. In this transmission process, the viral protein P2 attaches to virion-bound P3, and creates a molecular bridge between the virus and a putative receptor in the aphid's stylets. Recently, the virion-bound P3 has been suggested to participate in cell-to-cell or long-distance movement of CaMV within the host plant. Thus, as new data accumulate, the importance of the P3-virion complex during the virus life-cycle is becoming more and more evident. To provide a first insight into the knowledge of the transmission process of the virus, we determined the 3D structures of native and P3-decorated virions by cryo-electron microscopy and computer image processing. By difference mapping and biochemical analysis, we show that P3 forms a network around the capsomers and we propose a structural model for the binding of P3 to CaMV capsid in which its C terminus is anchored deeply in the inner shell of the virion, while the N-terminal extremity is facing out of the CaMV capsid, forming dimers by coiled-coil interactions. Our results combined with existing data reinforce the hypothesis that this coiled-coil N-terminal region of P3 could coordinate several functions during the virus life-cycle, such as cell-to-cell movement and aphid-transmission.  相似文献   

13.
We have used electron microscopy of thin sections and experiments on isolated viroplasms to compare the properties of four strains of cauliflower mosaic virus (CaMV), three of which were partially or completely deleted in open reading frame (ORF) II. Our results confirm that this gene is required for aphid transmissibility and show that the product of ORF II influences the firmness with which virions are held within the viroplasm. Analysis of the proteins in the viroplasms showed that a mutant with a partial deletion in ORF II produced a protein smaller than the normal ORF product. This smaller protein was non-functional with respect both to aphid transmissibility and properties of the viroplasms.  相似文献   

14.
Transgenic Arabidopsis (Arabidopsis thaliana) plants containing a monomeric copy of the cauliflower mosaic virus (CaMV) genome exhibited the generation of infectious, episomally replicating virus. The circular viral genome had been split within the nonessential gene II for integration into the Arabidopsis genome by Agrobacterium tumefaciens-mediated transformation. Transgenic plants were assessed for episomal infections at flowering, seed set, and/or senescence. The infections were confirmed by western blot for the CaMV P6 and P4 proteins, electron microscopy for the presence of icosahedral virions, and through polymerase chain reaction across the recombination junction. By the end of the test period, a majority of the transgenic Arabidopsis plants had developed episomal infections. The episomal form of the virus was infectious to nontransgenic plants, indicating that no essential functions were lost after release from the Arabidopsis chromosome. An analysis of the viral genomes recovered from either transgenic Arabidopsis or nontransgenic turnip (Brassica rapa var rapa) revealed that the viruses contained deletions within gene II, and in some cases, the deletions extended to the beginning of gene III. In addition, many of the progeny viruses contained small regions of nonviral sequence derived from the flanking transformation vector. The nature of the nucleotide sequences at the recombination junctions in the circular progeny virus indicated that most were generated by nonhomologous recombination during the excision event. The release of the CaMV viral genomes from an integrated copy was not dependent upon the application of environmental stresses but occurred with greater frequency with either age or the late stages of plant maturation.  相似文献   

15.
The open reading frame (ORF) III product (PIII) of cauliflower mosaic virus is necessary for the infection cycle but its role is poorly understood. We have used in vitro protein binding ('far Western') assays to demonstrate that PIII interacts with the cauliflower mosaic virus (CaMV) ORF II product (PII), a known aphid transmission factor. Aphid transmission of purified virions of the PII-defective strain CM4-184 was dependent upon added PII, but complementation was efficient only in the presence of PIII, demonstrating the requirement of PIII for transmission. Deletion mutagenesis mapped the interaction domains of PIII and PII to the 30 N-terminal and 61 C-terminal residues of PIII and PII, respectively. A model for interaction between PIII and PII is proposed on the basis of secondary structure predictions. Finally, a direct correlation between the ability of PIII and PII to interact and aphid transmissibility of the virus was demonstrated by using mutagenized PIII proteins. Taken together, these data argue strongly that PIII is a second 'helper' factor required for CaMV transmission by aphids.  相似文献   

16.
We report a survey of four viruses (beet western yellows luteovirus (BWYV), cauliflower mosaic caulimovirus (CaMV), turnip mosaic potyvirus (TuMV), turnip yellow mosaic tymovirus (TYMV)) in five natural populations of Brassica oleracea in Dorset (UK). All four viruses were common; 43% of plants were infected with BWYV, 60% with CaMV, 43% with TuMV and 18% with TYMV. For each virus there were significant differences in the proportion of infected plants among populations, which were not completely explained by differences in the age of plants. Multiple virus infections were prevalent, with 54% of plants having two or more virus types. There were statistically significant associations between pairs of viruses. The CaMV was positively associated with the other three viruses, and BWYV was also positively associated with TuMV. There was no detectable association between BWYV and TYMV, whereas TuMV and TYMV were negatively associated. We suggest these associations result from BWYV, CaMV and TuMV having aphid vectors in common, as aphids are attracted to plants that already have a virus infection. Infected plants were distributed randomly or were very weakly aggregated within populations. The implications of widespread multiple virus infections in natural plant populations are discussed with respect to the release of transgenic plants expressing virus-derived genes.  相似文献   

17.
In vitro expression of cauliflower mosaic virus genes   总被引:9,自引:4,他引:5       下载免费PDF全文
  相似文献   

18.
19.
Transmission of cauliflower mosaic virus (CaMV) by aphids requires two viral nonstructural proteins, the open reading frame (ORF) II and ORF III products (P2 and P3). An interaction between a C-terminal domain of P2 and an N-terminal domain of P3 is essential for transmission. Purified particles of CaMV are efficiently transmitted only if aphids, previously fed a P2-containing solution, are allowed to acquire a preincubated mixture of P3 and virions in a second feed, thus suggesting a direct interaction between P3 and coat protein. Herein we demonstrate that P3 directly interacts with purified viral particles and unassembled coat protein without the need for any other factor and that P3 mediates the association of P2 with purified virus particles. The interaction domain of P3 is located in its C-terminal half, downstream of the P3-P2 interaction domain but overlapping a region which binds nucleic acids. Mutagenesis of P3 which interferes with the interaction between P3 and virions is correlated with the loss of transmission by aphids. Taken together, our results demonstrate that P3 plays a crucial role in the formation of the CaMV transmissible complex by serving as a bridge between P2 and virus particles.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号