首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 5 毫秒
1.
Advances in proteomics and large scale studies of potential mitochondrial proteins have led to the identification of many novel mitochondrial proteins in need of further characterization. Among these novel proteins are three mammalian rRNA methyltransferase family members RNMTL1, MRM1, and MRM2. MRM1 and MRM2 have bacterial and yeast homologs, whereas RNMTL1 appears to have evolved later in higher eukaryotes. We recently confirmed the localization of the three proteins to mitochondria, specifically in the vicinity of mtDNA nucleoids. In this study, we took advantage of the ability of 2′-O-ribose modification to block site-specific cleavage of RNA by DNAzymes to show that MRM1, MRM2, and RNMTL1 are responsible for modification of human large subunit rRNA at residues G1145, U1369, and G1370, respectively.  相似文献   

2.
Nucleotide sequence of the 3′ terminus of E. coli 16S ribosomal RNA   总被引:10,自引:0,他引:10  
The 3′-terminal T1 oligonucleotide of E. coli 16S ribosomal RNA has been sequenced, using U2 and silkworm nucleases, and was found to be A-U-C-A-C-C-U-C-C-U-U-AOH. This result is discussed in view of previously reported conflicting sequences and with respect to suggested functional roles for this region of 16S RNA.  相似文献   

3.
α-Synuclein is a small protein strongly implicated in the pathogenesis of Parkinson’s disease and related neurodegenerative disorders. We report here the use of in-cell NMR spectroscopy to observe directly the structure and dynamics of this protein within E. coli cells. To improve the accuracy in the measurement of backbone chemical shifts within crowded in-cell NMR spectra, we have developed a deconvolution method to reduce inhomogeneous line broadening within cellular samples. The resulting chemical shift values were then used to evaluate the distribution of secondary structure populations which, in the absence of stable tertiary contacts, are a most effective way to describe the conformational fluctuations of disordered proteins. The results indicate that, at least within the bacterial cytosol, α-synuclein populates a highly dynamic state that, despite the highly crowded environment, has the same characteristics as the disordered monomeric form observed in aqueous solution.  相似文献   

4.
5.
6.
Abstract

The conformation of the colicin fragment of E. coli 16S rRNA was probed with various nucleases and with the adenosine-specific reagent diethylpyrocarbonate (DEP). The results confirm the presence of a stable central hairpin in the colicin fragment and a weaker additional secondary structure involving the regions 5′ and 3′ to this hairpin. By monitoring DEP accessibility at various stages of heat-denaturation sequential unfolding of individual base pairs was followed.

In agreement with previous results it could be shown that dimethylation of the two adjacent adenosines in the hairpin loop (a feature in virtually all ribosomes) leads to a destabilization of the hairpin helix.

Accessibilities of G residues, involved in the weaker additional secondary structure is anomalous. One G residue is sensitive to the single strand specific RN ase T1 and insensitive to DEP, while the situation is reversed for the adjoining G residue. The strong reaction of the latter G-residue with DEP is unusual and indicates a very special conformation.  相似文献   

7.
Footprinting of ribosomal protein S1 on the 49-nucleotide 3′ terminal cloacin DF13 fragment of 16 S rRNA at physiological ionic strength, pH and temperature yielded no detectable protection of any nucleotides from subsequent attack by the single strand specific nuclease S1, even at large excesses of ribosomal protein S1.  相似文献   

8.
Systematic studies on the hybridization of fluorescently labeled, rRNA-targeted oligonucleotides have shown strong variations in in situ accessibility. Reliable predictions of target site accessibility would contribute to more-rational design of probes for the identification of individual microbial cells in their natural environments. During the past 3 years, numerous studies of the higher-order structure of the ribosome have advanced our understanding of its spatial conformation. These studies range from the identification of rRNA-rRNA interactions based on covariation analyses to physical imaging of the ribosome for the identification of protein-rRNA interactions. Here we reevaluate our Escherichia coli 16S rRNA in situ accessibility data with regard to a tertiary-structure model of the small subunit of the ribosome. We localized target sequences of 176 oligonucleotides on a 3.0-Å-resolution three-dimensional (3D) model of the 30S ribosomal subunit. Little correlation was found between probe hybridization efficiency and the proximity of the probe target region to the surface of the 30S ribosomal subunit model. We attribute this to the fact that fluorescence in situ hybridization is performed on fixed cells containing denatured ribosomes, whereas 3D models of the ribosome are based on its native conformation. The effects of different fixation and hybridization protocols on the fluorescence signals conferred by a set of 10 representative probes were tested. The presence or absence of the strongly denaturing detergent sodium dodecyl sulfate had a much more pronounced effect than a change of fixative from paraformaldehyde to ethanol.  相似文献   

9.
Glutamate receptors mediate the majority of excitatory synaptic transmission in the central nervous system, and excessive stimulation of these receptors is involved in a variety of neurological disorders and neuronal damage from stroke. The development of new subtype-specific antagonists would be of considerable therapeutic interest. Natural products can provide important new lead compounds for drug discovery. The only natural product known to inhibit glutamate receptors competitively is (−)-kaitocephalin, which was isolated from the fungus Eupenicillium shearii and found to protect CNS neurons from excitotoxicity. Previous work has shown that it is a potent antagonist of some subtypes of glutamate receptors (AMPA and NMDA, but not kainate). The structure of kaitocephalin bound to the ligand binding domain of the AMPA receptor subtype, GluA2, is reported here. The structure suggests how kaitocephalin can be used as a scaffold to develop more selective and high affinity antagonists for glutamate receptors.  相似文献   

10.
11.
12.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号