首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stereochemical analysis of signal peptide interaction with E. coli membrane phospholipids revealed the structural complementarity of N-terminus of signal peptide alpha-helix and acid phospholipids. The formation of their complex leads to neutralization of charges and decrease in hydrophilicity of both components, and promotes insertion of peptide and phospholipid into the membrane, not separately but as a complex. Interaction of acid phospholipids with the E. coli alkaline phosphatase (AP) signal peptide was thoroughly analyzed, and it was shown that in this case a complex of signal peptide alpha-helix with phosphatidylglycerol is inserted into the membrane with the lowest energy expense. On the basis of the results of stereochemical analysis and the available experimental data, a molecular mechanism of protein translocation initiation across the membrane has been proposed, in which the key events are the formation of the complex "signal peptide alpha-helix-acid phospholipid", the coupled insertion of hydrophobic peptide-lipid complex into a nonpolar membrane interior and translocation across the membranes.  相似文献   

2.
Replacement of the positively charged signal peptide with neutral or negatively charged peptides due to substitution of Lys(–20) in the N-terminal region of the signal peptide leads to decreases in the rate of prePhoA membrane translocation in vivo and in the efficiency of prePhoA insertion into liposomes in vitro. The effect of anionic phospholipids on prePhoA insertion into model membranes is determined by the signal peptide N-terminus charge, while the dependence of prePhoA translocation across the cytoplasmic membrane in vivo is not, under the studied variations in the content of anionic phospholipids. This is evidence of the possibility of direct electrostatic interaction between the signal peptide N-terminus and anionic phospholipids, which in vivo, however, seems to involve some proteins of the Sec machinery.  相似文献   

3.
The translocation of secretory proteins derived from a Gram-positive (Staphylococcus hyicus prolipase) or a Gram-negative (Escherichia coli pre-OmpA protein) bacterium across the cytoplasmic membrane was studied in E. coli and Bacillus subtilis. in both microorganisms, the prolipase was found to be secreted across the plasma membrane when either the pre-prolipase signal peptide (38 amino acids in length) or the pre-OmpA signal peptide (21 amino acids in length) was used. Expression of the gene encoding the authentic pre-OmpA protein in B. subtilis resulted in the translocation of mature OmpA protein across the plasma membrane. Processing of the OmpA precursor in B. subtilis required the electrochemical potential and was sensitive to sodium azide, suggesting that the B. subtilis SecA homologue was involved in the translocation process. The mature OmpA protein, which was most likely present in an aggregated state, was fully accessible to proteases in protoplasted cells. Therefore, our results clearly demonstrate that an outer membrane protein can be secreted by B. subtilis, supporting the notion that the basic mechanism of protein translocation is highly conserved in Gram-positive and Gram-negative bacteria.  相似文献   

4.
Pore-forming colicins are a family of protein toxins (Mr40–70kDa) produced by Escherichia coli and related bacteria. They are bactericidal by virtue of their ability to form ion channels in the inner membrane of target cells. They provide a useful means of studying questions such as toxin action, polypeptide translocation across and into membranes, voltage-gated channels and receptor function. These colicins bind to a receptor in the outer membrane before being translocated across the cell envelope with the aid of helper proteins that belong to nutrient-uptake systems and the so-called‘Tol’proteins, the function of which has not yet been properly defined. A distinct domain appears to be associated with each of three steps (receptor binding, translocation and formation of voltage-gated channels). The Tol-dependent uptake pathway is described here. The structures and interactions of TolA, B, Q and R have by now been quite clearly defined. Transmembrane α-helix interactions are required for the functional assembly of the E. coli Tol complex, which is preferentially located at contact sites between the inner and outer membranes. The number of colicin translocation sites is about 1000 per cell. The role and the involvement of the OmpF porin (with colicins A and N) have been described in a recent study on the structural and functional interactions of a colicin-resistant mutant of OmpF. The X-ray crystal structure of the channel-forming fragment of colicin A and that of the entire colicin la have provided the basis for biophysical and site-directed muta-genesis studies. Thanks to this powerful combination, it has been established that the interaction with the receptor in the outer membrane leads to a very substantial conformational change, as a result of which the N-terminal domains of colicins interact with the lumen of the OmpF pore and then with the C-terminal domain of TolA. A molten globular conformation of colicins probably constitutes the intermediate translocation/insertion competent state. Once the pore has formed, the polypeptide chain spans the whole cell envelope. Three distinct steps occur in the last stage of the process: (i) fast binding of the C-terminal domain to the outer face of the cytoplasmic membrane; (ii) a slow insertion of the polypeptide chain into the outer face of the inner membrane in the absence of Δψ and (iii) a profound reorganization of the helix association, triggered by the transmembrane potential and resulting in the formation of the colicin channel.  相似文献   

5.
Signal peptide mutants ofEscherichia coli   总被引:10,自引:0,他引:10  
Numerous secretory proteins of the Gram-negative bacteriaE. coli are synthesized as precursor proteins which require an amino terminal extension known as the signal peptide for translocation across the cytoplasmic membrane. Following translocation, the signal peptide is proteolytically cleaved from the precursor to produce the mature exported protein. Signal peptides do not exhibit sequence homology, but invariably share common structural features: (1) The basic amino acid residues positioned at the amino terminus of the signal peptide are probably involved in precursor protein binding to the cytoplasmic membrane surface. (2) A stretch of 10 to 15 nonpolar amino acid residues form a hydrophobic core in the signal peptide which can insert into the lipid bilayer. (3) Small residues capable of -turn formation are located at the cleavage site in the carboxyl terminus of the signal peptide. (4) Charge characteristics of the amino terminal region of the mature protein can also influence precursor protein export. A variety of mutations in each of the structurally distinct regions of the signal peptide have been constructedvia site-directed mutagenesis or isolated through genetic selection. These mutants have shed considerable light on the structure and function of the signal peptide and are reviewed here.  相似文献   

6.
Organophosphorus hydrolase (OPH) from Flavobacterium species is a membrane‐associated homodimeric metalloenzyme and has its own signal peptide in its N‐terminus. We found that OPH was translocated into the periplasmic space when the original signal peptide‐containing OPH was expressed in recombinant Escherichia coli even though its translocation efficiency was relatively low. To investigate the usability of this OPH signal peptide for periplasmic expression of heterologous proteins in an E. coli system, we employed green fluorescent protein (GFP) as a cytoplasmic folding reporter and alkaline phosphatase (ALP) as a periplasmic folding reporter. We found that the OPH signal peptide was able to use both twin‐arginine translocation (Tat) and general secretory (Sec) machineries by switching translocation pathways according to the nature of target proteins in E. coli. These results might be due to the lack of Sec‐avoidance sequence in the c‐region and a moderate hydrophobicity of the OPH signal peptide. Interestingly, the OPH signal peptide considerably enhanced the translocation efficiencies for both GFP and ALP compared with commonly used TorA and PelB signal peptides that have Tat and Sec pathway dependences, respectively. Therefore, this OPH signal peptide could be successfully used in recombinant E. coli system for efficient periplasmic production of target protein regardless of the subcellular localization where functional folding of the protein occurs. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:848–854, 2016  相似文献   

7.
Protein translocation in Escherichia coli requires protein-conducting channels in cytoplasmic membranes to allow precursor peptides to pass through with adenosine triphosphate (ATP) hydrolysis. Here, we report a novel, sensitive method that detects the opening of the SecA-dependent protein-conducting channels at the nanogram level. E. coli inverted membrane vesicles were injected into Xenopus oocytes, and ionic currents were recorded using the two-electrode voltage clamp. Currents were observed only in the presence of E. coli SecA in conjunction with E. coli membranes. Observed currents showed outward rectification in the presence of KCl as permeable ions and were significantly enhanced by coinjection with the precursor protein proOmpA or active LamB signal peptide. Channel activity was blockable with sodium azide or adenylyl 5′-(β,γ-methylene)-diphosphonate, a nonhydrolyzable ATP analogue, both of which are known to inhibit SecA protein activity. Endogenous oocyte precursor proteins also stimulated ion current activity and can be inhibited by puromycin. In the presence of puromycin, exogenous proOmpA or LamB signal peptides continued to enhance ionic currents. Thus, the requirement of signal peptides and ATP hydrolysis for the SecA-dependent currents resembles biochemical protein translocation assay with E. coli membrane vesicles, indicating that the Xenopus oocyte system provides a sensitive assay to study the role of Sec and precursor proteins in the formation of protein-conducting channels using electrophysiological methods.  相似文献   

8.
Signal sequences frequently contain α-helix-destabilizing amino acids in the hydrophobic core. Nuclear magnetic resonance studies on the conformation of signal sequences in membrane mimetic environments revealed that these residues cause a break in the α-helix. In the precursor of the Escherichia coli outer membrane protein PhoE (pre-PhoE), a glycine residue at position -10 (Gly?10) is thought to be responsible for the break in the α-helix. We investigated the role of this glycine residue in the translocation process by employing site-directed mutagenesis. SDS-PAGE analysis showed drastic variations in the electrophoretic mobilities of the mutant precursor proteins, suggesting an important role of the glycine residue in determining the conformation of the signal sequence. In vivo, no drastic differences in the translocation kinetics were observed as compared with wild-type PhoE, except when a charged residue (Arg) was substituted for Gly?10. However, the in vitro translocation of all mutant proteins into inverted inner-membrane vesicles was affected. Two classes of precursors could be distinguished. Translocation of one class of mutant proteins (Ala, Cys and Leu for Gly?10) was almost independent of the presence of a ΔμH+, whereas translocation of the other class of precursors (wild type or Ser) was strongly decreased in the absence of the ΔμH+. Apparently, the ΔμH+ dependency of in vitro protein translocation varies with the signal-sequence core-region composition. Furthermore, a proline residue at position -10 resulted in a signal sequence that did not prevent the folding of the precursor in an in vitro trimerization assay.  相似文献   

9.
In Escherichia coli and other bacteria, MinD, along with MinE and MinC, rapidly oscillates from one pole of the cell to the other controlling the correct placement of the division septum. MinD binds to the membrane through its amphipathic C-terminal α-helix. This binding, promoted by ATP-induced dimerization, may be further enhanced by a consequent attraction of acidic phospholipids and formation of a stable proteolipid domain. In the context of this hypothesis we studied changes in dynamics of a model membrane caused by MinD binding using membrane-embedded fluorescent probes as reporters. A remarkable increase in membrane viscosity and order upon MinD binding to acidic phospholipids was evident from the pyrene and DPH fluorescence changes. This viscosity increase is cooperative with regards to the concentration of MinD-ATP, but not of the ADP form, indicative of dimerization. Moreover, similar changes in the membrane dynamics were demonstrated in the native inverted cytoplasmic membranes of E. coli, with a different depth effect. The mobility of pyrene-labeled phosphatidylglycerol indicated formation of acidic phospholipid-enriched domains in a mixed acidic-zwitterionic membrane at specific MinD/phospholipid ratios. A comparison between MinD from E. coli and Neisseria gonorrhea is also presented.  相似文献   

10.
Group 1B human pancreatic secretory phospholipase A2 (hp-sPLA2), a digestive enzyme synthesized by pancreatic acinar cells and present in pancreatic juice, do not have antibacterial activity towards Escherichia coli. Our earlier results suggest that the N-terminal first ten amino acid residues of hp-sPLA2 constitute major portion of the membrane binding domain of full-length enzyme and is responsible for the precise orientation of enzyme on the membrane surface by inserting into the lipid bilayers (Pande et al. (2006) Biochemistry, 45,12436–12447). In this study we report the antibacterial properties of a peptide (AVWQFRKMIK-CONH2; N10 peptide), which corresponds to the N-terminal first ten amino acid residues of hp-sPLA2, against E. coli. Full-length hp-sPLA2, which contains this peptide sequence as N-terminal α-helix, did not showed detectable antibacterial activity. Presence of physiological concentration of salt or preincubation of N10 peptide with soluble anionic polymer inhibits the antibacterial activity indicating the importance of electrostatic interaction in binding of peptide to bacterial membrane. Addition of peptide resulted in destabilization of outer as well as inner cytoplasmic membrane of E. coli suggesting bacterial membranes to be the main target of action. N10 peptide exhibits strong synergism with lysozyme and potentiates the antibacterial activity of lysozyme. The peptide was inactive against human erythrocyte. Our result shows for the first time that a peptide fragment of hp-sPLA2 possesses antibacterial activity towards E. coli and at subinhibitory concentration and can potentiate the antibacterial activity of membrane active enzyme. These observations suggest that N10 peptide may play an important role in the antimicrobial activity of pancreatic juice.  相似文献   

11.
The bacterial twin arginine translocation (Tat) pathway translocates across the cytoplasmic membrane folded proteins which, in most cases, contain a tightly bound cofactor. Specific amino-terminal signal peptides that exhibit a conserved amino acid consensus motif, S/T-R-R-X-F-L-K, direct these proteins to the Tat translocon. The glucose-fructose oxidoreductase (GFOR) of Zymomonas mobilis is a periplasmic enzyme with tightly bound NADP as a cofactor. It is synthesized as a cytoplasmic precursor with an amino-terminal signal peptide that shows all of the characteristics of a typical twin arginine signal peptide. However, GFOR is not exported to the periplasm when expressed in the heterologous host Escherichia coli, and enzymatically active pre-GFOR is found in the cytoplasm. A precise replacement of the pre-GFOR signal peptide by an authentic E. coli Tat signal peptide, which is derived from pre-trimethylamine N-oxide (TMAO) reductase (TorA), allowed export of GFOR, together with its bound cofactor, to the E. coli periplasm. This export was inhibited by carbonyl cyanide m-chlorophenylhydrazone, but not by sodium azide, and was blocked in E. coli tatC and tatAE mutant strains, showing that membrane translocation of the TorA-GFOR fusion protein occurred via the Tat pathway and not via the Sec pathway. Furthermore, tight cofactor binding (and therefore correct folding) was found to be a prerequisite for proper translocation of the fusion protein. These results strongly suggest that Tat signal peptides are not universally recognized by different Tat translocases, implying that the signal peptides of Tat-dependent precursor proteins are optimally adapted only to their cognate export apparatus. Such a situation is in marked contrast to the situation that is known to exist for Sec-dependent protein translocation.  相似文献   

12.
Abstract

Autotransporters produced by Gram-negative bacteria consist of an N-terminal signal sequence, a C-terminal translocator domain (TD), and a passenger domain in between. The TD facilitates the secretion of the passenger across the outer membrane. It generally consists of a channel-forming β-barrel that can be plugged by an α-helix that is formed by a polypeptide fragment immediately N-terminal to the barrel domain in the sequence. In this work, we characterized the TD of the hemoglobin protease Hbp of Escherichia coli by comparing its properties with the TDs of NalP of Neisseria meningitidis and IgA protease of Neisseria gonorrhoeae. All TDs were produced in inclusion bodies and folded in vitro. In the case of the TD of Hbp, this procedure resulted in autocatalytic intramolecular processing, which mimicked the in vivo processing. Liposome-swelling assays and planar lipid bilayer experiments revealed that the pore of the Hbp TD was largely obstructed. In contrast, an Hbp TD variant that lacked only one amino-acid residue from the N terminus showed the opening and closing of a channel comparable to what was reported for the TD of NalP. Additionally, the naturally processed helix contributed to the stability of the TD, as shown by chemical denaturation monitored by tryptophan fluorescence. Overall these results show that Hbp is processed by an autocatalytic intramolecular mechanism resulting in the stable docking of the α-helix in the barrel. In addition, we could show that the α-helix contributes to the stability of TDs.  相似文献   

13.
Proteins destined for translocation across the prokaryotic cytoplasmic membrane are synthesized as precursors carrying transient N-terminal extensions known as signal sequences. They facilitate initial engagement of precursor proteins with the sec-dependent translocase to initiate active threading of the polypeptide across the membrane. The translocated precursor is then processed by a transcytoplasmic signal peptidase anchored to the inner membrane. The temporal nature of cleavage of the signal sequence during pre-protein translocation has remained elusive. Using an engineered mammalian cytochrome b5 precursor we demonstrate that the signal peptide processing in Escherichia coli is an event that can occur after almost complete exocytoplasmic translocation of the preprotein is accomplished. We discuss implications of the findings in light of the known working model of sec-dependent pre-protein translocon.  相似文献   

14.
Recent insight into the biochemical mechanism of protein translocation in Escherichia coli indicates that SecA ATPase is required both for the initial binding of preproteins to the inner membrane as well as subsequent translocation across this structure. SecA appears to promote these events by direct recognition of the preprotein or preprotein-SecB complex, binding to inner-membrane anionic phospholipids, insertion into the membrane biiayer and association with the preprotein translocator, SecY/SecE. ATP binding appears to control the affinity of SecA for the various components of the system and ATP hydrolysis promotes cycling between its different biochemical states. As a component likely to catalyse a rate-determining step in protein secretion, SecA synthesis is co-ordinated with the activity of the protein export pathway. This form of negative reguiation appears to rely on SecA protein binding to its mRNA and repressing translation if conditions of rapid protein secretion prevail within the cell. A precise biochemical scheme for SecA-dependent catalysis of protein export and the details of secA regulation appear to be close at hand. The evolutionary conservation of SecA protein among eubacteria as well as the general requirement for translocation ATPases in other protein secretion systems argues for a mechanistic commonality of all prokaryotic protein export pathways.  相似文献   

15.
The bacterial Sec pathway is responsible for the translocation of secretory preproteins. During the later stages of transport, the membrane‐embedded signal peptidase I (SPase I) cleaves the signal peptide from a preprotein. We used tryptophan fluorescence spectroscopy of a soluble, catalytically active E. coli SPase I Δ2‐75 enzyme to study its dynamic conformational changes while in solution and when interacting with lipids and signal peptides. We generated four single Trp SPase I Δ2‐75 mutants, W261, W284, W300, and W310. Based on fluorescence quenching experiments, W300 and W310 were found to be more solvent accessible than W261 and W284 in the absence of ligands. W300 and W310 inserted into lipids, consistent with their location at the enzyme's proposed membrane‐interface region, while the solvent accessibilities of W261, W284, and W300 were modified in the presence of signal peptide, suggesting propagation of structural changes beyond the active site in response to peptide binding. The signal peptide binding affinity for the enzyme was measured via FRET experiments and the Kd determined to be 4.4 μM. The location of the peptide with respect to the enzyme was also established; this positioning is crucial for the peptide to gain access to the enzyme active site as it emerges from the translocon into the membrane bilayer. These studies reveal enzymatic structural changes required for preprotein proteolysis as it interacts with its two key partners, the signal peptide and membrane phospholipids. Proteins 2014; 82:596–606. © 2013 Wiley Periodicals, Inc.  相似文献   

16.
Aqualysin I, which is a subtilisin-type, extracellular protease secreted by Thermus aquaticus YT-1, is synthesized as a unique precursor bearing pro-domains at both N- and C-terminus of the mature protease domain as well as an N-terminal signal peptide. To investigate the function of the C-terminal pro-domain in maturation and export pathway of the precursor in E. coli cells, aqualysin I variants were constructed in which deletion mutants of the C-terminal pro-domain lacking its own signal peptide were inserted into pIN-III-ompA3. When E. coli harboring wild type and mutant plasmids were induced by 0.2 mM IPTG, active aqualysin I was produced by heat treatment at 65 °C. Aqualysin I precursors with deletions of more than 5 amino acid residues at the C-terminal end of pro-domain were much more rapidly processed than that of wild type, indicating that the C-terminal pro-domain functions as a inhibitor for processing of aqualysin I precursor. With the wild type, most of aqualysin I was present in membrane fraction (probably the outer membrane), whereas for the truncated mutants, it remained in the cytoplasm, indicating that for deletion mutants, their precursors expressed in cells were not translocated across the cytoplasmic membrane, despite the existence of an N-terminal signal peptide.  相似文献   

17.
Colicins are toxic proteins produced by Escherichia coli that must cross the membrane to exert their activity. The lipid insertion of their pf domain is linked to a conformational change which enables the penetration of a hydrophobic hairpin. They provide useful models to more generally study insertion of proteins, channel formation and protein translocation in and across membranes. In this paper, we study the lipid-destabilizing properties of helices H8 and H9 forming the hydrophobic hairpin of colicin E1. Modelling analysis suggests that those fragments behave like tilted peptides. The latter are characterized by an asymmetric distribution of their hydrophobic residues when helical. They are able to interact with a hydrophobic/hydrophilic interface (such as a lipid membrane) and to destabilize the organized system into which they insert. Fluorescence techniques using labelled liposomes clearly show that H9, and H8 to a lesser extent, destabilize lipid particles, by inducing fusion and leakage. AFM assays clearly indicate that H8 and especially H9 induce membrane fragilization. Holes in the membrane are even observed in the presence of H9. This behaviour is close to what is seen with viral fusion peptides. Those results suggest that the peptides could be involved in the toroidal pore formation of colicin E1, notably by disturbing the lipids and facilitating the insertion of the other, more hydrophilic, helices that will form the pore. Since tilted, lipid-destabilizing fragments are also common to membrane proteins and to signal sequences, we suggest that tilted peptides should have an ubiquitous role in the mechanism of insertion of proteins into membranes.  相似文献   

18.
This study compares the effect of cyclic R-, W-rich peptides with variations in amino acid sequences and sizes from 5 to 12 residues upon Gram negative and Gram positive bacteria as well as outer membrane-deficient and LPS mutant Escherichia coli (E. coli) strains to analyze the structural determinants of peptide activity. Cyclo-RRRWFW (c-WFW) was the most active and E. coli-selective sequence and bactericidal at the minimal inhibitory concentration (MIC). Removal of the outer membrane distinctly reduced peptide activity and the complete smooth LPS was required for maximal activity. c-WFW efficiently permeabilised the outer membrane of E. coli and promoted outer membrane substrate transport. Isothermal titration calorimetric studies with lipid A-, rough-LPS (r-LPS)- and smooth-LPS (s-LPS)-doped POPC liposomes demonstrated the decisive role of O-antigen and outer core polysaccharides for peptide binding and partitioning. Peptide activity against the inner E. coli membrane (IM) was very low. Even at a peptide to lipid ratio of 8/1, c-WFW was not able to permeabilise a phosphatidylglycerol/phosphatidylethanolamine (POPG/POPE) bilayer. Low influx of propidium iodide (PI) into bacteria confirmed a low permeabilising ability of c-WFW against PE-rich membranes at the MIC. Whilst the peptide effect upon eukaryotic cells correlated with the amphipathicity and permeabilisation of neutral phosphatidylcholine bilayers, suggesting a membrane disturbing mode of action, membrane permeabilisation does not seem to be the dominating antimicrobial mechanism of c-WFW. Peptide interactions with the LPS sugar moieties certainly modulate the transport across the outer membrane and are the basis of the E. coli selectivity of this type of peptides.  相似文献   

19.
Lipopeptide MSI-843 consisting of the nonstandard amino acid ornithine (Oct-OOLLOOLOOL-NH2) was designed with an objective towards generating non-lytic short antimicrobial peptides, which can have significant pharmaceutical applications. Octanoic acid was coupled to the N-terminus of the peptide to increase the overall hydrophobicity of the peptide. MSI-843 shows activity against bacteria and fungi at micromolar concentrations. It permeabilizes the outer membrane of Gram-negative bacterium and a model membrane mimicking bacterial inner membrane. Circular dichroism investigations demonstrate that the peptide adopts α-helical conformation upon binding to lipid membranes. Isothermal titration calorimetry studies suggest that the peptide binding to membranes results in exothermic heat of reaction, which arises from helix formation and membrane insertion of the peptide. 2H NMR of deuterated-POPC multilamellar vesicles shows the peptide-induced disorder in the hydrophobic core of bilayers. 31P NMR data indicate changes in the lipid head group orientation of POPC, POPG and Escherichia colitotal lipid bilayers upon peptide binding. Results from 31P NMR and dye leakage experiments suggest that the peptide selectively interacts with anionic bilayers at low concentrations (up to 5 mol%). Differential scanning calorimetry experiments on DiPOPE bilayers and 31P NMR data from E.coli total lipid multilamellar vesicles indicate that MSI-843 increases the fluid lamellar to inverted hexagonal phase transition temperature of bilayers by inducing positive curvature strain. Combination of all these data suggests the formation of a lipid-peptide complex resulting in a transient pore as a plausible mechanism for the membrane permeabilization and antimicrobial activity of the lipopeptide MSI-843.  相似文献   

20.
A major pathway for bacterial preprotein translocation is provided by the Sec-dependent preprotein translocation pathway. Proteins destined for Sec-dependent translocation are synthesized as preproteins with an N-terminal signal peptide, which targets them to the SecYEG translocase channel. The driving force for the translocation reaction is provided by the peripheral membrane ATPase SecA, which couples the hydrolysis of ATP to the stepwise transport of unfolded preproteins across the bacterial membrane. Since SecA is essential, highly conserved among bacterial species, and has no close human homologues, it represents a promising target for antibacterial chemotherapy. However, high-throughput screening (HTS) campaigns to identify SecA inhibitors are hampered by the low intrinsic ATPase activity of SecA and the requirement of hydrophobic membranes for measuring the membrane or translocation ATPase activity of SecA. To address this issue, we have developed a colorimetric high-throughput screening assay in a 384-well format, employing an Escherichia coli (E. coli) SecA mutant with elevated intrinsic ATPase activity. The assay was applied for screening of a chemical library consisting of ∼27,000 compounds and proved to be highly reliable (average Z′ factor of 0.89). In conclusion, a robust HTS assay has been established that will facilitate the search for novel SecA inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号