首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel palladium(II) complex has been synthesized with hexyldithiocarbamate (Hex-dtc) and 1,10-phenanthroline (phen) by the reaction of [Pd(phen)(H(2)O)(2)](NO(3))(2) with sodium salt of hexyldithiocarbamate and a complex of type [Pd(Hex-dtc) (phen)]NO(3) has been obtained. The complex has been characterized by elemental analysis, molar conductance, (1)H NMR, IR and electronic spectroscopic studies. The dithiocarbamate ligand acts in bidentate fashion. This water-soluble complex was screened against chronic myelogenous leukemia cell line, K562, for cytotoxic effects and showed significant antitumor activity much lower than that of cisplatin. The interaction of this complex with calf thymus DNA (ctDNA) was extensively investigated by a variety of spectroscopic techniques. Absorbance titration experiments imply the interaction of 4 Pd(II) complex molecules per 1000 nucleotides on DNA with positive cooperativity in the binding process and the complex denature the DNA at very low concentration (~14.3 μM). Fluorescence titration spectra and fluorescence Scatchard plots suggest that the Pd(II) complex intercalate in DNA. The gel chromatograms obtained from Sephadex G-25 column experiments showed that the binding of metal complex with DNA is so strong that it does not readily break. Furthermore, some thermodynamic and binding parameters found in the process of UV-Visible studies are described. They may provide specificity of the compound with ctDNA.  相似文献   

2.
Abstract

The interaction of the [Mn(mef)2(phen)H2O] complex in which mef is mefenamic acid drug and phen is 1,10 phenanthrolin ligand with calf thymus DNA (ct-DNA) was studied by using different spectroscopic methods, molecular docking and viscometery. The competitive fluorescence and UV–Vis absorption spectroscopy indicated that the complex interacted with ctDNA via intercalating binding mode with the binding constant of 1.16?×?104 Lmol?1. The thermodynamic studies showed that the reaction between the complex and ctDNA is exothermic. Furthermore, the complex induced changes in DNA viscosity. Circular dichroism spectroscopy (CD) was employed to measure the conformational changes of ctDNA in the presence of the complex and verified intercalation binding mode. The molecular modeling results illustrated that the complex interacted via intercalation by relative binding energy of ?28.45?kJ mol?1.  相似文献   

3.
The interaction between [Pd(But-dtc)(phen)]NO3 (where But-dtc = butyldithiocarbamate and phen = 1,10-phenanthroline) with HSA (Human Serum Albumin) was investigated by applying fluorescence, UV–Vis and circular dichroism techniques under physiological conditions. The results of fluorescence spectra indicated that the Pd(II) complex could effectively quench the fluorescence intensity of HSA molecules via static mechanism. The number of binding sites and binding constant of HSA–Pd(II) complex were calculated. Analysis of absorption titration data on the interaction between Pd(II) complex and HSA revealed the formation of HSA–Pd(II) complex with high-binding affinity. Thermodynamic parameters indicated that hydrophobic forces play a major role in this interaction. Furthermore, CD measurements were taken to explore changes in HSA secondary structure induced by the Pd(II) complex.  相似文献   

4.
The binding of [Ru(PDTA-H2)(phen)]Cl (PDTA = propylene-1,2-diaminetetra-acetic acid; phen = 1,10 phenanthroline) with ctDNA (=calf thymus DNA) has been investigated through intrinsic and induced circular dichroism, UV-visible absorption and fluorescence spectroscopies, steady-state fluorescence, thermal denaturation technique, viscosity and electrochemical measurements. The latter indicate that the cathodic and anodic peak potentials of the ruthenium complex shift to more positive values on increasing the DNA concentration, this behavior being a direct consequence of the interaction of both the reduced and oxidized form with DNA binding. From spectrophotometric titration experiments, the equilibrium binding constant and the number of monomer units of the polymer involved in the binding of one ruthenium molecule (site size) have been quantified. The intrinsic circular dichroism (CD) spectra show an unwinding and a conformational change of the DNA helix upon interaction of the ruthenium complex. Quenching process, thermal denaturation experiments and induced circular dichroism (ICD) are consistent with a partial intercalative binding mode.  相似文献   

5.
A new water-soluble palladium(II) complex, [Pd(bpy)(pyr-Ac]NO3 in which bpy = 2,2′-bipyridine and pyr-Ac is 1-pyrrolacetato, has been synthesized and characterized by spectroscopic methods (1H NMR, FT-IR, and UV-Vis), molar conductivity measurements, and elemental analysis. The results obtained from elemental analysis and conductivity measurements confirmed the stoichiometry of ligand and its complex while the characteristic peaks in UV-Vis and FT-IR and resonance peaks in 1H NMR spectra confirmed the formation of ligand frameworks around the palladium ion. The 50% cytotoxic concentration (Ic50) of new synthesized Pd(II) complex was determined by using MTT assay against human breast cancer cell line, T47D. The interaction between the Pd(II) complex with calf thymus DNA was studied at different temperatures by using absorption spectroscopy, fluorescence titration spectra, ethidium bromide displacement, and gel chromatography studies. The results obtained by absorption spectroscopy revealed that the Pd(II) complex can bind to DNA cooperatively at low concentrations. Several binding parameters in the above interaction were calculated by the fluorescence quenching method. The quenching mechanism was suggested to be the static quenching. The thermodynamic parameters: enthalpy change (ΔH °), entropy change (ΔS °), and Gibbs free energy (ΔG °), showed that van der Waals and hydrogen binding are predominant intermolecular forces between Pd(II) complex and DNA. These results were also consistent with the results obtained from Scatchard's plots.  相似文献   

6.
Abstract

Better solubility and improved toxicity of palladium complexes compared with cisplatin were major reasons for synthesis of novel Pd(II) complex, [Pd(8Q)(bpy)]NO3 (8Q=8-hydroxyquinolinate, bpy=2,2′-bipyridine). Interaction between the [Pd(8Q)(bpy)]NO3 complex and calf thymus DNA in aqueous solution has been investigated by circular dichroism (CD), UV-Visible absorption and fluorescence spectroscopic techniques. These experiments showed that prepared Pd(II) complex can effectively intercalate into CT-DNA and weakly bind to BSA in which the bovine serum albumin molecule was unfolded slightly. The cytotoxicity of the prepared complex has been evaluated on the MCF-7 and DU145 cell lines by MTT and TUNEL assay. The MTT results were showed that in DU145, the CC50 values of [Pd(8Q)(bpy)]NO3 and cisplatin are very close together (10.4 and 8.3?μM, respectively), unlike MCF-7. Accordingly, TUNEL assay was performed on DU145 and apoptosis was clearly obvious by 43% DNA fragmentation in the treated cell lines. So, we can suggest the [Pd(8Q)(bpy)]NO3 as alternative drug for cisplatin in the future which has great potential in DNA denaturation and apoptosis specially on prostate cancer. PdO nanoparticles were successfully prepared without supported any surfactants via sonochemical approach. The synthesized PdONPs were characterized using UV-Vis and FTIR spectroscopy, X-ray diffraction (XRD), dynamic light scattering (DLS), energy-dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM) and transmission electron microscopy (TEM).

Communicated by Ramaswamy H. Sarma  相似文献   

7.
Four complexes [Pd(L)(bipy)Cl]·4H2O (1), [Pd(L)(phen)Cl]·4H2O (2), [Pt(L)(bipy)Cl]·4H2O (3), and [Pt(L)(phen)Cl]·4H2O (4), where L = quinolinic acid, bipy = 2,2’-bipyridyl, and phen = 1,10-phenanthroline, have been synthesized and characterized using IR, 1H NMR, elemental analysis, and single-crystal X-ray diffractometry. The binding of the complexes to FS-DNA was investigated by electronic absorption titration and fluorescence spectroscopy. The results indicate that the complexes bind to FS-DNA in an intercalative mode and the intrinsic binding constants K of the title complexes with FS-DNA are about 3.5?×?104 M?1, 3.9?×?104 M?1, 6.1?×?104 M?1, and 1.4?×?105 M?1, respectively. Also, the four complexes bind to DNA with different binding affinities, in descending order: complex 4, complex 3, complex 2, complex 1. Gel electrophoresis assay demonstrated the ability of the Pt(II) complexes to cleave pBR322 plasmid DNA.  相似文献   

8.
Some amino acid derivatives, such as R-glycine, have been synthesized together with their full spectroscopic characterization. The sodium salts of these bidentate amino acid ligands have been interacted with [M(bpy)(H2O)2](NO3)2 giving the corresponding some new complexes with formula [M(bpy)(R-gly)]NO3 (where M is Pt(II) or Pd(II), bpy is 2,2′-bipyridine and R-gly is butyl-, hexyl- and octyl-glycine). Due to less solubility of octyl derivatives, the biological activities of butyl and hexyl derivatives have been tested against chronic myelogenous leukemia cell line, K562. The interaction of these complexes with highly polymerized calf thymus DNA has been extensively studied by means of electronic absorption, fluorescence and other measurements. The experimental results suggest that these complexes positive cooperatively bind to DNA presumably via groove binding. Molecular dynamic results show that the DNA structure is largely maintained its native structure in hexylglycine derivative–water mixtures and at lower temperatures. The simulation data indicates that the more destabilizing effect of butylglycine is induced by preferential accumulation of these molecules around the DNA and due to their more negative free energy of binding via groove binding.  相似文献   

9.
Abstract

The synthesis and chemical characterization of two structurally related platinum(II) and palladium(II) complexes, [M(2,2′-bipyridine)(morpholinedithiocarbamate)]NO3 or [M(bpy) (mor-dtc)]NO3, where M = Pt(II) or Pd(II), are described. Studies of anti-tumor activities of these complexes against human cell tumor lines (K562) have been carried out. They show 50% cytotoxic concentration (Cc50) values much lower than that of cisplatin. Both of these water soluble complexes have been shown to interact with calf thymus DNA (ct-DNA) using difference absorption-, fluorescence-, and circular dichroism-titration techniques. These studies showed that both complexes exhibit cooperative binding and presumably intercalate in DNA. These complexes unexpectedly denature DNA at very low concentrations (50–100 μM). Several binding and thermodynamic parameters are also described.  相似文献   

10.
Three novel copper(II), cobalt(II), and nickel(II) complexes of lapachol (Lap) containing 110-phenanthroline (phen) ligand, [M(Lap)2(phen)] (M=Cu(II), 1, Co(II), 2, and Ni(II), 3), have been synthesized and characterized using, elemental analysis and spectroscopic studies. Their interactions with calf thymus DNA (CT DNA) were investigated using viscosity, thermal denaturation, circular dichorism, fluorescence quenching, and electronic absorption spectroscopy. The DNA cleavage abilities of 13 have been studied, where cleavage activity of copper complex 1 is more than the complexes 2 and 3. The in vitro cytotoxic potential of the complexes 1–3 against human cervical carcinoma (HeLa), human liver hepatocellular carcinoma (HepG-2), and human colorectal adenocarcinoma (HT-29) cells indicated their promising antitumor activity with quite low IC50 values in the range of .15–2.41 μM, which are lower than those of cisplatin.  相似文献   

11.
The aim of this study was synthesis of two new water-soluble fluorescent palladium and platinum complexes with formulas of [Pt(DACH)(FIP)](NO3)2 and [Pd(DACH)(FIP)](NO3)2, respectively, where FIP is 2-(furan-2-yl)-1H-imidazo[4,5-f][1,10] phenanthroline and DACH is 1R,2R-diaminocyclohexane. Fluorescence spectroscopy, circular dichroism (CD), thermal denaturation measurement, ionic strength, and kinetic study displayed groove binding of Pt complex on DNA, while due to binding of Pd complex, B form of DNA convert to Z form. Due to electrostatic interaction of Pd complex with DNA, the DNA form is converted and it provides enough space for Pd complex to insert between base stacking of DNA. UV–vis study shows two complexes could denature the DNA at low concentrations in exothermic process and Pt complex is more active than Pd complex. Finally, the anticancer and growth inhibitory activities of synthesized complexes were investigated against human colon cancer cell line HCT116 after incubation time of 24 h using MTT assay and higher activity was observed for the platinum complex. Interaction of the two metal derivative complexes was studied by molecular docking and molecular dynamics simulation. The results showed that Pt complexes have higher negative docking energy and higher tendency for interaction with DNA, and exert more structural change on DNA.  相似文献   

12.
To evaluate the biological preference of [Yb(phen)2(OH2)Cl3](H2O)2 (phen is 1,10-phenanthroline) for DNA, interaction of Yb(III) complex with DNA in Tris–HCl buffer is studied by various biophysical and spectroscopic techniques which reveal that the complex binds to DNA. The results of fluorescence titration reveal that [Yb(phen)2(OH2)Cl3](H2O)2 has strongly quenched in the presence of DNA. The binding site number n, apparent binding constant K b, and the Stern–Volmer quenching constant K SV are determined. ΔH 0, ΔS 0, and ΔG 0 are obtained based on the quenching constants and thermodynamic theory (ΔH 0?>?0, ΔS 0?>?0, and ΔG 0?<?0). The experimental results show that the Yb(III) complex binds to DNA by non-intercalative mode. Groove binding is the preferred mode of interaction for [Yb(phen)2(OH2)Cl3](H2O)2 to DNA. The DNA cleavage results show that in the absence of any reducing agent, Yb(III) complex can cleave DNA. The antimicrobial screening tests are also recorded and give good results in the presence of Yb(III) complex.  相似文献   

13.
The binding modes of the [Ru(II)(1,10-phenanthroline)(L1L2) dipyrido[3,2-a:2′,3′-c]phenazine]2+ {[Ru(phen)(py) Cl dppz]+ (L1 = Cl, L2 = pyridine) and ([Ru(phen)(py)2dppz]2+ (L1 = L2 = pyridine)} to native DNA is compared to that of the [Ru(II)(1,10-phenanthroline)2dipyrido[3,2-a:2′,3′-c]phenazine]2+ complex ([Ru(phen)2dppz]2+) by various spectroscopic and hydrodynamic methods including electric absorption, linear dichroism (LD), fluorescence spectroscopy, and viscometric titration. All measured properties, including red-shift and hypochromism in the dppz absorption band, nearly perpendicular molecular plane of the dppz ligand with respect to the local DNA helix axis, prohibition of the ethidium binding, the light switch effect and binding stoichiometry, increase in the viscosity upon binding to DNA, increase in the melting temperature are in agreement with classical intercalation of dppz ligand of the [Ru(phen)2dppz]2+ complex, in which both phenanthroline ligand anchored to the DNA phosphate groups by electrostatic interaction. [Ru(phen)(py)2 dppz]2+ and [Ru(phen)(py) Cl dppz]+ complexes had one of the phenanthroline ligand replaced by either two pyridine ligands or one pyridine plus a chlorine ion. They exhibited similar protection from water molecules, interaction with DNA bases, and occupying site that is common with ethidium. The dppz ligand of these two Ru(II) complex were greatly tilted relative to the DNA helix axis, suggesting that the dppz ligand resides inside the DNA and is not perpendicular relative to the DNA helix axis. These observation suggest that anchoring the [Ru(phen)2dppz]2+complex by both phenanthroline is essential for the dppz ligand to be classically intercalated between DNA base-pairs.  相似文献   

14.
Abstract

In this study, four Co(III)-, Cu(II)-, Zn(II)- and Pd(II)-based potent antibacterial complexes of formula K3[Co(ox)3]·3H2O (I), [Cu(phen)2Cl]Cl·6.5H2O (II), [Zn(phen)3]Cl2 (III) and [Pd(phen)2](NO3)2 (IV) (where ox is oxalato and phen is 1,10-phenanthroline) were synthesized. They were characterized by elemental analysis, molar conductivity measurements, UV–vis, Fourier transform infrared (FT-IR) and proton nuclear magnetic resonance (1H-NMR) techniques. These metal complexes were ordered in three combination series of I+II, I+II+III and I+II+III+IV. Antibacterial screening for each metal complex and their combinations against Gram-positive and Gram-negative bacteria revealed that all compounds were more potent antibacterial agents against the Gram-negative than those of the Gram-positive bacteria. The four metal complexes showed antibacterial activity in the order I > II > III > IV, and the activity of their combinations followed the order of I+II+III+IV > I+II+III > I+II. The DNA-binding properties of complex (I) and its three combinations were studied using electronic absorption and fluorescence (ethidium bromide displacement assay) spectroscopy. The results obtained indicated that all series interact effectively with calf thymus DNA (CT-DNA). The binding constant (Kb), the number of binding sites (n) and the Stern–Volmer constant (Ksv) were obtained based on the results of fluorescence measurements. The calculated thermodynamic parameters supported that hydrogen bonding and van der Waals forces play a major role in the association of each series of metal complexes with CT-DNA and follow the above-binding affinity order for the series.

Communicated by Ramaswamy H. Sarma  相似文献   

15.
The interaction of a series of mixed ligand complexes of the type [Ru(NH3)4(diimine)]Cl2, where diimine=2,2-bipyridine (bipy), 1,10-phenanthroline (phen), 5,6-dimethyl-1,10-phenanthroline (5,6-dmp), 4,7-dimethyl-1,10-phenanthroline (4,7-dmp), 2,9-dimethyl-1,10-phenanthroline (2,9-dmp), 3,4,7,8-tetra-methyl-1,10-phenanthroline (Me4phen), with calf thymus DNA has been studied using absorption, emission and circular dichroic spectral measurements and viscometry and electrochemical techniques. On interaction with DNA the complexes show hypochromism and red-shift in their MLCT band suggesting that the complexes bind to DNA. The magnitude of the binding constant (Kb) obtained from absorption spectral titration varies depending upon the nature of the diimine ligand: Me4phen > 5,6-dmp > 4,7-dmp > phen suggesting the use of diimine ‘face’ of the octahedral complexes in binding to DNA. The interaction of phen complex possibly involves phen ring partially inserted into the DNA base pairs. In contrast, the methyl-substituted phen complexes would involve hydrophobic interaction of the phen ring in the grooves of DNA, which is supported by hydrogen bonding interactions of the ammonia ligands with the intrastrand nucleobases. Also the shape and size of the phen ligand as modified by the methyl substituents determine the DNA binding site sizes (0.12-0.45 base pairs). The relative emission intensities (I/I0) of the DNA-bound complexes parallel the variation in Kb values. Almost all the metal complexes exhibit induced CD bands on binding to B DNA, with the 4,7-dmp and Me4phen complexes inducing certain structural modifications on the biopolymer. DNA melting curves obtained in the presence of metal complexes reveal a monophasic melting of the DNA strands, the Me4phen complex exhibiting a slightly enhanced tendency to stabilize the double-stranded DNA. There were slight to appreciable changes in the relative viscosities of DNA, which are consistent with enhanced hydrophobic interaction of the methyl-substituted phen rings. Upon interaction with CT DNA, the Me4phen, 4,7-dmp and 5,6-dmp complexes, in contrast to bipy, phen and 2,9-dmp complexes, show a decrease in anodic peak current in their cyclic voltammograms suggesting that they exhibit enhanced DNA binding. DNA cleavage experiments show that all the complexes induce cleavage of pBR322 plasmid DNA, the Me4phen and 5,6-dmp complexes being remarkably more efficient than other complexes.  相似文献   

16.
Two Zn(II) complexes of formula [Zn(bpy)(Gly)]NO3 (I) and [Zn(phen)(Gly)]NO3 (II) (where bpy = 2,2′-bipyridine, phen = 1,10-phenanthroline and Gly = glycine) were synthesized and characterized by elemental analysis, molar conductance measurements, UV–vis, FT-IR, and 1H NMR spectra. The interaction ability of these complexes with calf thymus DNA was monitored using spectroscopic methods, including UV–vis absorption spectroscopy, ethidium bromide displacement, Fourier transform infrared, and electrophoretic mobility assay. Further, the human serum albumin interactions of complexes I and II were investigated using UV–vis absorption spectroscopy, fluorescence quenching, circular dichroism, and Fourier transform infrared. The results obtained from these analyses indicated that both complexes interact effectively with CT-DNA and HSA. The binding constant (Kb), the Stern–Volmer constant (Ksv), and the number of binding sites (n) at different temperatures were determined for CT-DNA and HSA. Also, the negative ΔH° and ΔS° values showed that both hydrogen bonds and van der Waals forces played major roles in the association of CT-DNA-Zn(II) and HSA-Zn(II) complex formation. The displacement experiments suggested that Zn(II)-complexes primarily bound to Sudlow’s site II of HSA. The distance between the donor (HSA) and the acceptor (Zn(II) complexes) was estimated on the basis of the Forster resonance energy transfer (FRET) and the alteration of HSA secondary structure induced by the compounds were confirmed by FT-IR spectroscopy. The complexes follow the binding affinity order of I > II with DNA and II > I with HSA. Finally, Antibacterial activity of complexes I and II have been screened against gram positive and gram negative bacteria.  相似文献   

17.
Abstract

An new water-soluble Pd(II) complex, 2,2′-bipyridin n-butyl dithiocarbamato Pd(II) nitrate has been synthesized. The Pd(II) complex has been characterized by elemental analysis and conductivity measurements as well as spectroscopic methods such as infrared, 1H NMR, and ultraviolet-visible. The interaction between this new design Pd(II)-complex, an anti-tumor component, with carrier proteins of β-lactoglobulin-A and -B (BLG-A and -B) were studied at different temperatures of 27, 37, 42, and 47 °C by fluorescence spectroscopy and far-UV circular dichroism (CD) spectrophotometric techniques. A strong fluorescence quenching interaction of Pd(II) complex with BLG-A and -B was observed at different temperatures. The binding parameters were evaluated by fluorescence quenching method. The thermodynamic parameters, including ΔH°, ΔS°, and ΔG° were calculated by fluorescence quenching method indicated that the electrostatic and hydrophobic forces might play a major role in the interactions of Pd(II) complex with BLG-A and -B, respectively. The distances between donors (Trps of the BLG-A and -B) and acceptor (Pd(II) complex) were obtained according to the fluorescence resonance energy transfer (FRET). Far-UV CD studies showed that the Pd(II) complex did not represent any significant changes in the secondary structures of BLG- A and -B. The difference in the interaction properties observed for BLG-A and -B with Pd(II) complex is related to the difference in the amino acid sequences between these two variants.  相似文献   

18.
Palladium(II) complexes of type [Pd(Ln)Cl2] and [Pd(bdt)(Ln)] have been synthesized using 2-acetyl pyridine derivatives(Ln) and benzene-12-dithiol(bdt). The synthesized complexes have been characterized by various analytical techniques like thermo gravimetric analysis, elemental analysis, conductance measurement, and spectroscopic techniques like elemental analysis, mass spectra, absorption spectra, IR, 1H NMR, energy-dispersive X-ray spectroscopy. The interaction of the complexes with calf-thymus DNA (CT-DNA) has been explored by absorption titration, viscosity measurement methods. Based on the observations, an intercalative binding mode of DNA has been proposed. In order to provide additional evidence for the intercalation mode of binding between the complex and CT-DNA, fluorescence titration experiment was performed. In addition, molecular modeling study has been carried out with the aim of establishing the complex’s binding mode. Antibacterial activity study of the complexes have been screened against pathogenic bacteria such as Staphylococcus aureus, Escherichia coli, Bacillus subtilis, Serratia marcescens, and Pseudomonas aeruginosa. Gel electrophoresis assay demonstrates that all the complexes can cleave the pUC19 plasmid DNA.  相似文献   

19.
New binary copper(II) complexes [Cu(4-mphen)2(NO3)]NO3·H2O (1), [Cu(5-mphen)2 (NO3)]NO3·H2O (2), the known complex [Cu(dmphen)2(NO3)]NO3 (3) and [Cu(tmphen)2 (NO3)]NO3·H2O (4) - (4-mphen: 4-methyl-1,10-phenanthroline, 5-mphen: 5-methyl-1,10-phenanthroline, dmphen: 4,7-dimethyl-1,10-phenanthroline, tmphen: 3,4,7,8-tetramethyl-1,10-phenanthroline), have been synthesized and characterized by CHN analysis, ESI-MS, FTIR and single-crystal X-ray diffraction techniques. Interaction of these complexes with calf thymus DNA (CT-DNA) has been investigated by absorption spectral titration, ethidium bromide (EB) and Hoechst 33,258 displacement assay and thermal denaturation measurement. These complexes cleaved pUC19 plasmid DNA in the absence and presence of an external agent. Notably, in the presence of H2O2 as an activator, the cleavage abilities of these complexes are obviously enhanced at low concentration. Addition of hydroxyl radical scavengers like DMSO shows significant inhibition of the DNA cleavage activity of these complexes. BSA quenching mechanism was investigated with regard to the type of quenching, binding constant, number of binding locations and the thermodynamic parameters. The experimental results suggested that the probable quenching mechanism was an unusual static process and hydrophobic forces play a dominant role. The CT-DNA and BSA binding efficiencies of these complexes follow the order: 4 > 3 > 1 > 2. Furthermore, in vitro cytotoxicities of these complexes on tumor cells lines (Caco-2, MCF-7 and A549) and healthy cell line (BEAS-2B) showed that these complexes exhibited anticancer activity with low IC50 values. The effect of hydrophobicity of the methyl-substituted phenanthrolines on DNA and protein binding activities of these complexes is discussed.  相似文献   

20.
In our search for new DNA intercalating ligands, a novel bifunctional intercalator 11-(9-acridinyl)dipyrido[3,2-a:2′,3′-c]phenazine, acdppz (has two potentially effective intercalators via dipyridophenazine(dppz) and acridine which are linked together via C-C bond) and its corresponding Ru(II) polypyridyl complex [Ru(phen)2(acdppz)]2+ (where phen = 1,10-phenanthroline) have been synthesized and characterized. The electrochemical behaviors of the ligand and its complex have been thoroughly examined. The structure of acdppz and [Ru(phen)2(acdppz)]2+ were determined by X-ray crystallography. From the crystal structure of the complex, we found that the dppz moiety is not coplanar with the acridine ring, having a dihedral angle of 64.79 in the acdppz. The selected bond lengths and angles for the crystal structure of [Ru(phen)2(acdppz)]2+ were compared to the geometry-optimized molecular structure of [Ru(phen)2(acdppz)]2+ derived by Gaussian. The interaction of [Ru(phen)2(acdppz)]2+ with calf-thymus (CT) DNA was investigated by absorption and viscometry titration, thermal denaturation studies. The above measurements indicated that the complex binds less strongly with the CT DNA due to the intercalation by the ruthenium bound acdppz with an intrinsic binding constant of 2.6 × 105 M−1. Molecular-modeling studies also support an intercalative mode of binding of the complex to the model duplex d(CGCAATTGCG)2 possibly from the major groove with a slight preference for GC rich region. Additionally, the title complex promotes the cleavage of plasmid pBR322 DNA upon irradiation under aerobic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号