首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract

Acknowledging the importance of studies toward the development of measures against terrorism and bioterrorism, this study aims to contribute to the design of new prototypes of potential drugs against smallpox. Based on a former study, nine synthetic feasible prototypes of selective inhibitors for thymidylate kinase from Variola virus (VarTMPK) were designed and submitted to molecular docking, molecular dynamics simulations and binding energy calculations. The compounds are simplifications of two more complex scaffolds, with a guanine connected to an amide or alcohol through a spacer containing ether and/or amide groups, formerly suggested as promising for the design of selective inhibitors of VarTMPK. Our study showed that, despite the structural simplifications, the compounds presented effective energy values in interactions with VarTMPK and HssTMPK and that the guanine could be replaced by a simpler imidazole ring linked to a –NH2 group, without compromising the affinity for VarTMPK. It was also observed that a positive charge in the imidazole ring is important for the selectivity toward VarTMPK and that an amide group in the spacer does not contribute to selectivity. Finally, prototype 3 was pointed as the most promising to be synthesized and experimentally evaluated.

Communicated by Ramaswamy H. Sarma  相似文献   

2.
Smallpox, caused by the variola virus (VARV), was a highly virulent disease with high mortality rates causing a major threat for global human health until its successful eradication in 1980. Despite previously published historic and modern VARV genomes, its past dissemination and diversity remain debated. To understand the evolutionary history of VARV with respect to historic and modern VARV genetic variation in Europe, we sequenced a VARV genome from a well-described eighteenth-century case from England (specimen P328). In our phylogenetic analysis, the new genome falls between the modern strains and another historic strain from Lithuania, supporting previous claims of larger diversity in early modern Europe compared to the twentieth century. Our analyses also resolve a previous controversy regarding the common ancestor between modern and historic strains by confirming a later date around the seventeenth century. Overall, our results point to the benefit of historic genomes for better resolution of past VARV diversity and highlight the value of such historic genomes from around the world to further understand the evolutionary history of smallpox as well as related diseases.This article is part of the theme issue ‘Insights into health and disease from ancient biomolecules’.  相似文献   

3.
Dose-response data for Variola major (V. major), the causative agent of smallpox, were obtained from the open literature, summarized, and fitted with three dose-response models. It is known from prior outbreak experience that there is generally a difference in infectivity of the agent and its subsequent mortality depending on the age of the patient. A source of animal dose-response data were found with age delineation for the exposure group (suckling mice, intraperitoneal exposure). This delineation was used to adapt current dose-response models to include an age dependency parameter. The degree of the models' fit to the data was ascertained using maximum likelihood estimation (MLE). The effect of host age could be described quantitatively using modifications to the beta Poisson and exponential dose-response models. The modifications improvement in the accuracy of risk prediction by 72% for the beta Poisson model and 7% for the exponential model, compared to the original (unmodified) models.  相似文献   

4.
Abstract

P21-activated kinase 4 (PAK4) is a serine/threonine protein kinase, which is associated with many cancer diseases, and thus being considered as a potential drug target. In this study, three-dimensional quantitative structure-activity relationship (3D-QSAR), molecular docking and molecular dynamics (MD) simulations were performed to explore the structure-activity relationship of a series of pyrropyrazole PAK4 inhibitors. The statistical parameters of comparative molecular field analysis (CoMFA, Q 2 = 0.837, R 2 = 0.990, and R 2 pred = 0.967) and comparative molecular similarity indices analysis (CoMSIA, Q 2 = 0.720, R 2 = 0.972, and R 2 pred = 0.946) were obtained from 3D-QSAR model, which exhibited good predictive ability and significant statistical reliability. The binding mode of PAK4 with its inhibitors was obtained through molecular docking study, which indicated that the residues of GLU396, LEU398, LYS350, and ASP458 were important for activity. Molecular mechanics generalized born surface area (MM-GBSA) method was performed to calculate the binding free energy, which indicated that the coulomb, lipophilic and van der Waals (vdW) interactions made major contributions to the binding affinity. Furthermore, through 100?ns MD simulations, we obtained the key amino acid residues and the types of interactions they participated in. Based on the constructed 3D-QSAR model, some novel pyrropyrazole derivatives targeting PAK4 were designed with improved predicted activities. Pharmacokinetic and toxicity predictions of the designed PAK4 inhibitors were obtained by the pkCSM, indicating these compounds had better absorption, distribution, metabolism, excretion and toxicity (ADMET) properties. Above research provided a valuable insight for developing novel and effective pyrropyrazole compounds targeting PAK4.  相似文献   

5.
Background: Hepatitis B virus (HBV) has affected over 300 million people worldwide which causes to induce mostly liver disease and liver cancer. It is a member of the family Hepadnaviridae which is a small DNA virus with unusual characters like retroviruses. Generally, hepatoprotective drugs provoke some side effects in human beings. For the reason, this study aims to identify alternative drug molecules from the natural source of medicinal plants with smaller quantity of side effects than those conventional drugs in treating HBV. Methods: We developed computational methods for calculating drug and target binding resemblance using the Maestro v10.2 of Schrodinger suite. The target and ligand molecules were obtained from recognized databases. Ligand molecules of 40 phytoconstituents were retrieved from variety of plants after we executed crucial analyses such as molecular docking and absorption, distribution, metabolism, and excretion (ADME) analysis.Results: In the docking analysis, the natural analogues repandusinic acid showed better docking scores of –14.768 with good binding contacts. The remaining bioactive molecules corilagin, furosin, nirurin, iso-quercetin and gallocatechin also showed better docking scores.Conclusion: This computational analysis reveals that repandusinic acid is a suitable drug candidate for HBV. Therefore, we recommend that this analogue is suitable in further exploration using in vitro studies.  相似文献   

6.
Calcium–calmodulin-dependent protein kinase IV (CAMK4) plays significant role in the regulation of calcium-dependent gene expression, and thus, it is involved in varieties of cellular functions such as cell signaling and neuronal survival. On the other hand, curcumin, a naturally occurring yellow bioactive component of turmeric possesses wide spectrum of biological actions, and it is widely used to treat atherosclerosis, diabetes, cancer, and inflammation. It also acts as an antioxidant. Here, we studied the interaction of curcumin with human CAMK4 at pH 7.4 using molecular docking, molecular dynamics (MD) simulations, fluorescence binding, and surface plasmon resonance (SPR) methods. We performed MD simulations for both neutral and anionic forms of CAMK4-curcumin complexes for a reasonably long time (150 ns) to see the overall stability of the protein–ligand complex. Molecular docking studies revealed that the curcumin binds in the large hydrophobic cavity of kinase domain of CAMK4 through several hydrophobic and hydrogen-bonded interactions. Additionally, MD simulations studies contributed in understanding the stability of protein–ligand complex system in aqueous solution and conformational changes in the CAMK4 upon binding of curcumin. A significant increase in the fluorescence intensity at 495 nm was observed (λexc = 425 nm), suggesting a strong interaction of curcumin to the CAMK4. A high binding affinity (KD = 3.7 × 10?8 ± .03 M) of curcumin for the CAMK4 was measured by SPR further indicating curcumin as a potential ligand for the CAMK4. This study will provide insights into designing a new inspired curcumin derivatives as therapeutic agents against many life-threatening diseases.  相似文献   

7.
8.
In the present contribution, multicomplex-based pharmacophore studies were carried out on the structural proteome of Plasmodium falciparum 1-deoxy-D -xylulose-5-phosphate reductoisomerase. Among the constructed models, a representative model with complementary features, accountable for the inhibition was used as a primary filter for the screening of database molecules. Auxiliary evaluations of the screened molecules were performed via drug-likeness and molecular docking studies. Subsequently, the stability of the docked inhibitors was envisioned by molecular dynamics simulations, principle component analysis, and molecular mechanics-Poisson-Boltzmann surface area-based free binding energy calculations. The stability assessment of the hits was done by comparing with the reference (beta-substituted fosmidomycin analog, LC5) to prioritize more potent candidates. All the complexes showed stable dynamic behavior while three of them displayed higher binding free energy compared with the reference. The work resulted in the identification of the compounds with diverse scaffolds, which could be used as initial leads for the design of novel PfDXR inhibitors.  相似文献   

9.
Gout is a common inflammatory arthritis caused by the deposition of urate crystals within joints. It is increasingly in prevalence during the past few decades as shown by the epidemiological survey results. Xanthine oxidase (XO) is a key enzyme to transfer hypoxanthine and xanthine to uric acid, whose overproduction leads to gout. Therefore, inhibiting the activity of xanthine oxidase is an important way to reduce the production of urate. In the study, in order to identify the potential natural products targeting XO, pharmacophore modeling was employed to filter databases. Here, two methods, pharmacophore based on ligand and pharmacophore based on receptor-ligand, were constructed by Discovery Studio. Then GOLD was used to refine the potential compounds with higher fitness scores. Finally, molecular docking and dynamics simulations were employed to analyze the interactions between compounds and protein. The best hypothesis was set as a 3D query to screen database, returning 785 and 297 compounds respectively. A merged set of the above 1082 molecules was subjected to molecular docking, which returned 144 hits with high-fitness scores. These molecules were clustered in four main kinds depending on different backbones. What is more, molecular docking showed that the representative compounds established key interactions with the amino acid residues in the protein, and the RMSD and RMSF of molecular dynamics results showed that these compounds can stabilize the protein. The information represented in the study confirmed previous reports. And it may assist to discover and design new backbones as potential XO inhibitors based on natural products.  相似文献   

10.
Human male germ cell-associated kinase (hMAK) is an androgen-inducible gene in prostate epithelial cells, and it acts as a coactivator of androgen receptor signaling in prostate cancer. The 3D structure of the hMAK kinase was modeled based on the crystal structure of CDK2 kinase using comparative modeling methods, and the ATP-binding site was characterized. We have collected five inhibitors of hMAK from the literature and docked into the ATP-binding site of the kinase domain. Solvated interaction energies (SIE) of inhibitor binding are calculated from the molecular dynamics simulations trajectories of protein–inhibitor complexes. The contribution from each active site residue in hMAK toward inhibitor binding revealed the nature and extent of interactions between inhibitors and individual residues. The main chain atoms of Met79 invariably form hydrogen bonds with all five inhibitors. The amino acids Leu7, Val15, and Leu129 stabilize the inhibitors via CH–pi interactions. The Asp140 in the active site and Glu77 in hinge region show characteristic hydrogen bonding interactions with inhibitors. From SIE, the residue-wise interactions revealed the nature of non-bonding contacts and modifications required to increase the inhibitor activity. Our work provides 3D model structure of hMAK and molecular basis for the mechanisms of hMAK inhibition at atomic level that aid in designing new potent inhibitors.  相似文献   

11.
Phosphodiesterases 4 enzyme is an attractive target for the design of anti-inflammatory and bronchodilator agents. In the present study, pharmacophore and atom-based 3D-QSAR studies were carried out for pyrazolopyridine and quinoline derivatives using Schrödinger suite 2014-3. A four-point pharmacophore model was developed using 74 molecules having pIC50 ranging from 10.1 to 4.5. The best four feature model consists of one hydrogen bond acceptor, two aromatic rings, and one hydrophobic group. The pharmacophore hypothesis yielded a statistically significant 3D-QSAR model, with a high correlation coefficient (R2?=?.9949), cross validation coefficient (Q2?=?.7291), and Pearson-r (.9107) at six component partial least square factor. The external validation indicated that our QSAR model possessed high predictive power with R2 value of .88. The generated model was further validated by enrichment studies using the decoy test. Molecular docking, free energy calculation, and molecular dynamics (MD) simulation studies have been performed to explore the putative binding modes of these ligands. A 10-ns MD simulation confirmed the docking results of both stability of the 1XMU–ligand complex and the presumed active conformation. Outcomes of the present study provide insight in designing novel molecules with better PDE4 inhibitory activity.  相似文献   

12.
Brucella suis is a dangerous biological warfare agent already used for military purposes. This bacteria cause brucellosis, a zoonosis highly infective and difficult to fight. An important selective target for chemotherapy against this disease is nucleoside hydrolase (NH), an enzyme still not found in mammals. We present here the first three-dimensional structure of B. suis NH (BsNH) and propose this enzyme as a molecular target to the drug design in the fight against brucellosis. In addition, we performed molecular docking studies, aiming to analyze the three-dimensional positioning of nine known inhibitors of Chritidia fasciculata NH (CfNH) in the active sites of BsNH and CfNH. We also analyzed the main interactions of some of these compounds inside the active site of BsNH and the relevant factors to biological activity. These results, together with further molecular dynamics (MD) simulations, pointed out to the most promising compound as lead for the design of potential inhibitors of BsNH. Most of the docking and MD results corroborated to each other and the docking results also suggested a good correlation with experimental data.  相似文献   

13.
14.
Herein, we report compound KST9046, a new agent possessing quinazoline-urea scaffold. Preliminary biological evaluation done by the National Cancer Institute (NCI), USA, showed a great inhibitory effect of KST9046 over the 60 cell-line tumor panel. Accordingly, it was selected for a dose-response assay; a broad spectrum antiproliferative activity with GI50 ranging from 1.3 to 3.9?µM was exerted. To explore a potential kinase inhibitory effect, KST9046 was applied at a single dose of 10?µM against a kinase panel of 347 different enzymes representing >50% of the predicted human protein kinome. Interestingly, selective inhibition of 76% was observed on DDR1 kinase. Further, KST9046 showed an IC50 value of 4.38?µM for DDR1. A molecular docking model presented KST9046 as a potential type III inhibitor for DDR1 kinase with an allosteric mode of interaction, which may offer an explanation for its selectivity. As further investigation, CYP450 assay was carried out for KST9046, it showed a promising toxicity profile against four different isoforms. Based on these findings, KST9046 can be further evaluated as a promising safe new hit for the development of broad spectrum anticancer agents with a selectivity for DDR1 kinase.  相似文献   

15.
The G-protein coupled estrogen receptor 1 GPER/GPR30 is a transmembrane seven-helix (7TM) receptor involved in the growth and proliferation of breast cancer. Due to the absence of a crystal structure of GPER/GPR30, in this work, molecular modeling studies have been carried out to build a three-dimensional structure, which was subsequently refined by molecular dynamics (MD) simulations (up to 120 ns). Furthermore, we explored GPER/GPR30’s molecular recognition properties by using reported agonist ligands (G1, estradiol (E2), tamoxifen, and fulvestrant) and the antagonist ligands (G15 and G36) in subsequent docking studies. Our results identified the E2 binding site on GPER/GPR30, as well as other receptor cavities for accepting large volume ligands, through GPER/GPR30 π–π, hydrophobic, and hydrogen bond interactions. Snapshots of the MD trajectory at 14 and 70 ns showed almost identical binding motifs for G1 and G15. It was also observed that C107 interacts with the acetyl oxygen of G1 (at 14 ns) and that at 70 ns the residue E275 interacts with the acetyl group and with the oxygen from the other agonist whereas the isopropyl group of G36 is oriented toward Met141, suggesting that both C107 and E275 could be involved in the protein activation. This contribution suggest that GPER1 has great structural changes which explain its great capacity to accept diverse ligands, and also, the same ligand could be recognized in different binding pose according to GPER structural conformations.  相似文献   

16.
17.
Abstract

Benzothiazole derivatives represent an important class of therapeutic chemical agents and are widely used for interesting biological activities and therapeutic functions including anticancer, antitumor and antimicrobial. In this study, we have performed similarity/substructure-based search of eMolecule database to find out promising benzothiazole derivatives as EGFR tyrosine kinase inhibitors. Several screening criteria that included molecular docking, pharmacokinetics and synthetic accessibility were used on initially derived about 7000 molecules consisting of benzothiazole as major component. Finally, four molecules were found to be promising EGFR tyrosine kinase inhibitors. The best docked pose of each molecule was considered for binding interactions followed by molecular dynamics (MD) and binding energy calculation. Molecular docking clearly showed the final proposed derivatives potential to form a number of binding interactions. MD simulation trajectories undoubtedly indicated that the EGFR protein becomes stable when proposed derivatives bind to the receptor cavity. Strong binding affinity was found for all molecules toward the EGFR which was substantiated by the binding energy calculation using the MM-PBSA approach. Therefore, proposed benzothiazole derivatives may be promising EGFR tyrosine kinase inhibitors for potential application as cancer therapy.

Communicated by Ramaswamy H. Sarma  相似文献   

18.
Wee1-like protein kinase (Wee1) is a tyrosine kinase that regulates the G2 checkpoint and prevents entry into mitosis in response to DNA damage. Based on a series of signaling pathways initiated by Wee1, Wee1 has been recognized as a potential target for cancer therapy. To discover potent Wee1 inhibitors with novel scaffolds, ligand-based pharmacophore model has been built based on 101 known Wee1 inhibitors. Then the best pharmacophore model, AADRRR.340, with good partial least square (PLS) statistics (R2?=?0.9212, Q2?=?0.7457), was selected and validated. The validated model was used as a three-dimensional (3D) search query for databases virtual screening. The filtered molecules were further analyzed and refined by Lipinski’s rule of 5, multiple docking procedures (high throughput virtual screening (HTVS), standard precision (SP), genetic optimization for ligand docking (GOLD), extra precision (XP), and unique quantum polarized ligand docking (QPLD)); absorption, distribution, metabolism, excretion, and toxicity (ADMET) screening; and the Prime/molecular mechanics generalized born surface area (MM-GBSA) method binding free energy calculations. Eight leads were identified as potential Wee1 inhibitors, and a 50?ns molecular dynamics (MD) simulation was carried out for top four inhibitors to predict the stability of ligand–protein complex. Molecular mechanics Poisson–Boltzmann surface area (MM-PBSA) based on MD simulation and the energy contribution per residue to the binding energy were calculated. In the end, three hits with good stabilization and affinity to protein were identified.

Communicated by Ramaswamy H. Sarma  相似文献   


19.
With an aim toward glycogenolysis control in Type 2 diabetes, we have investigated via kinetic experiments and computation the potential of indirubin (IC?? > 50 μM), indirubin-3'-oxime (IC?? = 144 nM), KT5720 (K(i) = 18.4 nM) and staurosporine (K(i) = 0.37 nM) as phosphorylase kinase (PhKγtrnc) ATP-binding site inhibitors, with the latter two revealed as potent inhibitors in the low nM range. Because of lack of structural information, we have exploited information from homologous kinase complexes to direct in silico calculations (docking, molecular dynamics, and MMGBSA) to predict the binding characteristics of the four ligands. All inhibitors are predicted to bind in the same active site area as the ATP adenine ring, with binding dominated by hinge region hydrogen bonds to Asp104:O and Met106:O (all four ligands) and also Met106:NH (for the indirubins). The PhKγtrnc-staurosporine complex has the greatest number of receptor-ligand hydrogen bonds, while for the indirubin-3'-oxime and KT5720 complexes there is an important network of interchanging water molecules bridging inhibitor-enzyme contacts. The MM-GBSA results revealed the source of staurosporine's low nM potency to be favorable electrostatic interactions, while KT5720 has strong van der Waals contributions. KT5720 interacts with the greatest number of protein residues either by direct or 1-water bridged hydrogen bond interactions, and the potential for more selective PhK inhibition based on a KT5720 analogue has been established. Including receptor flexibility in Schr?dinger induced-fit docking calculations in most cases correctly predicted the binding modes as compared with the molecular dynamics structures; the algorithm was less effective when there were key structural waters bridging receptor-ligand contacts.  相似文献   

20.
Three series of novel urushiol derivatives were designed by introducing a hydroxamic acid moiety into the tail of an alkyl side chain and substituents with differing electronic properties or steric bulk onto the benzene ring and alkyl side chain. The compounds’ binding affinity toward HDAC8 was screened by Glide docking. The highest-scoring compounds were processed further with molecular docking, MD simulations, and binding free energy studies to analyze the binding modes and mechanisms. Ten compounds had Glide scores of ?8.2 to ?10.2, which revealed that introducing hydroxy, carbonyl, amino, or methyl ether groups into the alkyl side chain or addition of –F, –Cl, sulfonamide, benzamido, amino, or hydroxy substituents on the benzene ring could significantly increase binding affinity. Molecular docking studies revealed that zinc ion coordination, hydrogen bonding, and hydrophobic interactions contributed to the high calculated binding affinities of these compounds toward HDAC8. MD simulations and binding free energy studies showed that all complexes possessed good stability, as characterized by low RMSDs, low RMSFs of residues, moderate hydrogen bonding and zinc ion coordination and low values of binding free energies. Hie147, Tyr121, Phe175, Hip110, Phe119, Tyr273, Lys21, Gly118, Gln230, Leu122, Gly269, and Gly107 contributed favorably to the binding; and Van der Waals and electrostatic interactions provided major contributions to the stability of these complexes. These results show the potential of urushiol derivatives as HDAC8 binding lead compounds, which have great therapeutic potential in the treatment of various malignancies, neurological disorders, and human parasitic diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号