首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structure of the oligomeric protein α-crystallin from bovine eye lens was investigated by small-angle neutron scattering (SANS) with contrast variation. Based on the SANS curves, the match point for α-crystallin (43% D2O) and its average scattering length density at this point (2.4•1010 cm-2) were evaluated. The radius of gyration and the distance distri- bution functions for α-crystallin were calculated. On the basis of these calculations, it was concluded that α-crystallin is characterized by homogeneous distribution of scattering density in the domains inaccessible for water penetration, and all polypeptide subunits in α-crystallin oligomers undergo equal deuteration. The latter indicates that all α-crystallin subunits are equally accessible for water and presumably for some other low molecular weight substances. These conclusions on the α-crystallin structure (homogeneous distribution of scattering density and equal accessibility of all subunits for low molecular weight substances) should be taken into account when elaborating a-crystallin quaternary structure models.  相似文献   

2.
3.
The aim of the present work was to improve the solubility and dissolution profile of Irbesartan (IRB), a poorly water-soluble drug by formation of inclusion complex with β-cyclodextrin (βCD). Phase solubility studies revealed increase in solubility of the drug upon cyclodextrin addition, showing AL—type of graph with slope less than one indicating formation of 1:1 stoichiometry inclusion complex. The stability constant (K s) was found to be 104.39 M−1. IRB–βCD binary systems were prepared by cogrinding, kneading using alcohol, kneading using aqueous alcohol, and coevaporation methods. Characterization of the binary systems were carried out by differential scanning calorimetry, Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray diffraction, and proton nuclear magnetic resonance. The dissolution profiles of inclusion complexes were determined and compared with those of IRB alone and physical mixture. Among the various methods, coevaporation was the best in which the solubility was increased and dissolution rate of the drug was the highest. The study indicated the usefulness of cyclodextrin technology to overcome the solubility problem of IRB.  相似文献   

4.
5.
Solution scattering of neutrons and x-rays can provide direct information on local interactions of importance for biomolecular folding and structure. Here, neutron scattering experiments are combined with molecular-dynamics simulation to interpret the scattering signal of a series of dipeptides with varying degrees of hydrophobicity (GlyAla, GlyPro, and AlaPro) in concentrated aqueous solution (1:20 solute/water ratio) in which the peptides form large segregates (up to 50–60 amino acids). Two main results are found: 1), the shift to lower Q of the so-called water-ring peak (Q ≈ 2 Å−1) arises mainly from an overlap of water-peptide and peptide-peptide correlations in the region of 1.3 < Q < 2 Å−1, rather than from a shift of the water signal induced by the presence of the clusters; and 2), in the low-Q region (Q ≈ 0.6 Å−1) a positive peak is observed originating from both the solute-solute correlations and changes in the water structure induced by the formation of the clusters. In particular, the water molecules are found to be more connected than in the bulk with hydrogen-bonding directions tangential to the exposed hydrophobic surfaces, and this effect increases with increasing peptide hydrophobicity. This work demonstrates that important information on the (hydrophobic) hydration of biomolecules can be obtained in the very-small-angle region.  相似文献   

6.
α-synuclein (αSyn) is a protein consisting of 140 amino acid residues and is abundant in the presynaptic nerve terminals in the brain. Although its precise function is unknown, the filamentous aggregates (amyloid fibrils) of αSyn have been shown to be involved in the pathogenesis of Parkinson''s disease, which is a progressive neurodegenerative disorder. To understand the pathogenesis mechanism of this disease, the mechanism of the amyloid fibril formation of αSyn must be elucidated. Purified αSyn from bacterial expression is monomeric but intrinsically disordered in solution and forms amyloid fibrils under various conditions. As a first step toward elucidating the mechanism of the fibril formation of αSyn, we investigated dynamical behavior of the purified αSyn in the monomeric state and the fibril state using quasielastic neutron scattering (QENS). We prepared the solution sample of 9.5 mg/ml purified αSyn, and that of 46 mg/ml αSyn in the fibril state, both at pD 7.4 in D2O. The QENS experiments on these samples were performed using the near-backscattering spectrometer, BL02 (DNA), at the Materials and Life Science Facility at the Japan Accelerator Research Complex, Japan. Analysis of the QENS spectra obtained shows that diffusive global motions are observed in the monomeric state but largely suppressed in the fibril state. However, the amplitude of the side chain motion is shown to be larger in the fibril state than in the monomeric state. This implies that significant solvent space exists within the fibrils, which is attributed to the αSyn molecules within the fibrils having a distribution of conformations. The larger amplitude of the side chain motion in the fibril state than in the monomeric state implies that the fibril state is entropically favorable.  相似文献   

7.
The effect of noncatalytic domains 2 + 3 on the intrinsic activity and thermostability of the EF-Tu GTPase center was evaluated in experiments with isolated domains 1 and six chimeric variants of mesophilic Escherichia coli (Ec) and thermophilic Bacillus stearothermophilus (Bst) EF-Tus. The isolated catalytic domains 1 of both EF-Tus displayed similar GTPase activities at their optimal temperatures. However, noncatalytic domains 2 + 3 of the EF-Tus influenced the GTPase activity of domains 1 differently, depending on the domain origin. Ecdomains 2 + 3 suppressed the GTPase activity of the Ecdomain 1, whereas those of BstEF-Tu stimulated the Bstdomain 1 GTPase. Domain 1 and domains 2 + 3 of both EF-Tus positively cooperated to heat-stabilize their GTPase centers to attain optimal activity at a temperature close to the optimal growth temperature of either organism. This can be explained by a stabilization effect of domains 2 + 3 on α-helical regions of the G-domain as revealed by CD spectroscopy.  相似文献   

8.
9.
10.
11.
The mechanism by which class A β-lactamases hydrolyze β-lactam antibiotics has been the subject of intensive investigation using many different experimental techniques. Here, we report on the novel use of both neutron and high resolution x-ray diffraction to help elucidate the identity of the catalytic base in the acylation part of the catalytic cycle, wherein the β-lactam ring is opened and an acyl-enzyme intermediate forms. To generate protein crystals optimized for neutron diffraction, we produced a perdeuterated form of the Toho-1 β-lactamase R274N/R276N mutant. Protein perdeuteration, which involves replacing all of the hydrogen atoms in a protein with deuterium, gives a much stronger signal in neutron diffraction and enables the positions of individual deuterium atoms to be located. We also synthesized a perdeuterated acylation transition state analog, benzothiophene-2-boronic acid, which was also isotopically enriched with 11B, as 10B is a known neutron absorber. Using the neutron diffraction data from the perdeuterated enzyme-inhibitor complex, we were able to determine the positions of deuterium atoms in the active site directly rather than by inference. The neutron diffraction results, along with supporting bond-length analysis from high resolution x-ray diffraction, strongly suggest that Glu-166 acts as the general base during the acylation reaction.  相似文献   

12.
Washing spinach PSII oxygen-evolution complex (OEC) with 2 mmol/L EGTA or extraction medium caused a 28.4% and 25.0% loss of oxygen evolution activities respectively, but the loss of polypeptide components of OEC did not take place, whereas washing with 1 mol/L NaCI caused both a 90.0% loss of oxygen evolution activity and loss of 17, 23kD polypeptides. Adding 5–10 mmol/L CaC12 could restore oxygen evolution activities of OEC by various washing to a great extent, but had no effect on control OEC, whereas adding 5–10 mmol/L EGTA had no effect on the OEC by various' washing, but caused the loss of oxygen evolution mixtures, which could induce the release of of 17, 23kD polypeptides from OEC, caused 54.3% loss of oxygen evolution activity, under this circumstance, adding 2 mmol/L of EGTA could only maintain a weak oxygen evolution activity of OEC, but adding 10 mmol/L of CaCl2 could restore oxygen evolution activity of OEC to the control level. These findings' suggest a two way loose binding of Ga2+ to PSⅡ OEC in one way Ca2+ is loose bound to the surface of PSⅡOEC and in other, the Ca2+-binding site is wrapped by 17, 23kD polypeptides. Both of them have effect on oxygen evolution activity of PSⅡ OEC. By way, Mn2+ can antagonize the restoration of oxygen evolution activity by Ca2+ to the NaCl-washing PSⅡ OEC.  相似文献   

13.
14.
The elongation factor Tu (EF-Tu) dependent GTPase (in the presence of aurodox) is stimulated by analogs of the aminoacyl tRNA 3′-terminus in the following order: A-Phe < C-A-Phe < C-C-A-Phe. The GTPase-promoting activity of A-Phe is strongly enhanced by tRNA-C-C (devoid of 3′-terminal adenosine residue) but not by intact tRNA-C-C-A. On the other hand, the activity of C-A-Phe as the EF-Tu·GTPase promoter is only slightly enhanced by tRNA-C-C.  相似文献   

15.
Ultraviolet-visible (UV-vis) spectra, fluorescence spectra, electrochemistry, and the thermodynamic method were used to discuss the interaction mode between the inclusion complex of hematoxylin with β-cyclodextrin and herring sperm DNA. On the condition of physiological pH, the result showed that hematoxylin and β-cyclodextrin formed an inclusion complex with binding ratio nhematoxylin:nβ-cyclodextrin = 1:1. The interaction mode between β-cyclodextrin-hematoxylin and DNA was a mixed binding, which contained intercalation and electrostatic mode. The binding ratio between β-cyclodextrin-hematoxylin and DNA was nβ-cyclodextrin -hematoxylin:nDNA = 2:1, binding constant was K? 298.15K = 5.29 × 104 L·mol?1, and entropy worked as driven force in this action.  相似文献   

16.
17.
18.

Background

Base editors are a class of genome editing tools with the ability to efficiently induce point mutations in genomic DNA, without inducing double-strand breaks or relying on homology-direct repair as in other such technologies. Recently, adenine base editors (ABEs) have been developed to mediate the conversion of A?T to G?C in genomic DNA of human cells, mice, and plants. Here, we investigated the activity and efficiency of several adenine base editors in zebrafish and showed that base editing can be used to create new models of pathogenic diseases caused by point mutations.

Results

The original ABE7.10 exhibits almost no activity in zebrafish. After codon optimization, we found that a zABE7.10 variant could induce targeted conversion of adenine to guanine in zebrafish at multiple tested genomic loci, and all the target sites showed a high rate of germline targeting efficiency. Furthermore, using this system, we established a zebrafish model of 5q-Syndrome that contained a new point mutation in rps14. The further modification of zABE7.10 by a bipartite nuclear localization signals (bpNLS) resulted in 1.96-fold average improvement in ABE-mediated editing efficiency at four sites.

Conclusions

Collectively, this system, designated as zABE7.10, provides a strategy to perform A?T to G?C base editing in zebrafish and enhances its capacity to model human diseases.
  相似文献   

19.
The µ opioid receptor (µOR), the principal target to control pain, belongs to the G protein-coupled receptors (GPCRs) family, one of the most highlighted protein families due to their importance as therapeutic targets. The conformational flexibility of GPCRs is one of their essential characteristics as they take part in ligand recognition and subsequent activation or inactivation mechanisms. It is assessed that the intrinsic mechanical properties of the µOR, more specifically its particular flexibility behavior, would facilitate the accomplishment of specific biological functions, at least in their first steps, even in the absence of a ligand or any chemical species usually present in its biological environment. The study of the mechanical properties of the µOR would thus bring some indications regarding the highly efficient ability of the µOR to transduce cellular message. We therefore investigate the intrinsic flexibility of the µOR in its apo-form using all-atom Molecular Dynamics simulations at the sub-microsecond time scale. We particularly consider the µOR embedded in a simplified membrane model without specific ions, particular lipids, such as cholesterol moieties, or any other chemical species that could affect the flexibility of the µOR. Our analyses highlighted an important local effect due to the various bendability of the helices resulting in a diversity of shape and volume sizes adopted by the µOR binding site. Such property explains why the µOR can interact with ligands presenting highly diverse structural geometry. By investigating the topology of the µOR binding site, a conformational global effect is depicted: the correlation between the motional modes of the extra- and intracellular parts of µOR on one hand, along with a clear rigidity of the central µOR domain on the other hand. Our results show how the modularity of the µOR flexibility is related to its pre-ability to activate and to present a basal activity.  相似文献   

20.
Myelin protein P2 is a fatty acid-binding structural component of the myelin sheath in the peripheral nervous system, and its function is related to its membrane binding capacity. Here, the link between P2 protein dynamics and structure and function was studied using elastic incoherent neutron scattering (EINS). The P38G mutation, at the hinge between the β barrel and the α-helical lid, increased the lipid stacking capacity of human P2 in vitro, and the mutated protein was also functional in cultured cells. The P38G mutation did not change the overall structure of the protein. For a deeper insight into P2 structure-function relationships, information on protein dynamics in the 10 ps to 1 ns time scale was obtained using EINS. Values of mean square displacements mainly from protein H atoms were extracted for wild-type P2 and the P38G mutant and compared. Our results show that at physiological temperatures, the P38G mutant is more dynamic than the wild-type P2 protein, especially on a slow 1-ns time scale. Molecular dynamics simulations confirmed the enhanced dynamics of the mutant variant, especially within the portal region in the presence of bound fatty acid. The increased softness of the hinge mutant of human myelin P2 protein is likely related to an enhanced flexibility of the portal region of this fatty acid-binding protein, as well as to its interactions with the lipid bilayer surface requiring conformational adaptations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号