首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Crystal structures of the 64M-2 antibody Fab fragment complexed with DNA photoproducts of dT(6-4)T and dTT(6-4)TT, and of the 64M-3 Fab fragment complexed with dT(6-4)T were determined. The 5'-thymine base of the bound dT(6-4)T ligand is in a half-chair conformation, and its base plane is nearly perpendicular to the planar 3'-pyrimidone base. The 64M-2 and 64M-3 Fabs have a common structure suitable for accommodating the dT(6-4)T ligand. In each of the antigen binding sites of the 64M-2 and 64M-3 Fabs, basic residues of His 35H and Arg 95H are located at the bottom of the binding pocket, and are hydrogen-bonded to the base moieties of dT(6-4)T. Two water molecules are involved in the interactions that intervene between the base moieties and the binding site. Aromatic residues of Trp 33H and Tyr 100iH form a side-wall of the pocket and are in van der Waals interactions with the base moieties. The Trp 33H side-chain is placed in parallel to the 3'-pyrimidone base, and the Tyr 100iH side-chain is nearly perpendicular to the 5'-thymine base. His 27dL, Tyr 32L, Leu 93L, and Ser 58H forming another side-wall are located in the vicinity of the sugar-phosphate backbone. In the 64M-2 Fab complex with dTT(6-4)TT, 5'- and 3'-side phosphate groups are also involved in interaction with Fab residues.  相似文献   

3.
DNA photoproducts with (6-4) pyrimidine-pyrimidone adducts formed by ultraviolet radiation are implicated in mutagenesis and cancer, particularly skin cancer. The crystal structure of the Fab fragment of the murine 64M-2 antibody specific to DNA T(6-4)T photoproducts is determined as a complex with dT(6-4)T, a (6-4) pyrimidine-pyrimidone photodimer of dTpT, at 2.4 A resolution to a crystallographic R-factor of 0.199 and an R(free) value of 0.279. The 64M-2 Fab molecule is in an extended arrangement with an elbow angle of 174 degrees, and its five complementarity-determining regions, except L2, are involved in the ligand binding. The bound dT(6-4)T ligand adopting a ring structure with (6-4) linked 5' thymine-3' pyrimidone bases is fully accommodated in an antigen-binding pocket of about 15 Ax10 A. The 5'-thymine and 3'-pyrimidone bases are in half-chair and planar conformations, respectively, and are nearly perpendicular to each other. The 5'-thymine base is hydrogen-bonded to Arg95H and Ser96H, and is in van der Waals contact with Tyr100iH. The 3'-pyrimidone base is hydrogen-bonded to His35H, and is in contact with Trp33H. Three water molecules are located at the interface between the bases and the Fab residues. Hydrogen bonds involving these water molecules also contribute to Fab recognition of the dT(6-4)T bases. The sugar-phosphate backbone connecting the bases is surrounded by residues His27dL, Tyr32L, Ser92L, Trp33H, and Ser58H, but is not hydrogen-bonded to these residues.  相似文献   

4.
About one-third of the amino acid residues conserved in all scorpion long chain Na+ channel toxins are aromatic residues, some of which constitute the so-called "conserved hydrophobic surface." At present, in-depth structure-function studies of these aromatic residues using site-directed mutagenesis are still rare. In this study, an effective yeast expression system was used to study the role of seven conserved aromatic residues (Tyr5, Tyr14, Tyr21, Tyr35, Trp38, Tyr42, and Trp47) from the scorpion toxin BmK M1. Using site-directed mutagenesis, all of these aromatic residues were individually substituted with Gly in association with a more conservative substitution of Phe for Tyr5, Tyr14, Tyr35, or Trp47. The mutants, which were expressed in Saccharomyces cerevisiae S-78 cells, were then subjected to a bioassay in mice, electrophysiological characterization on cloned Na+ channels (Nav1.5), and CD analysis. Our results show an eye-catching correlation between the LD50 values in mice and the EC50 values on Nav1.5 channels in oocytes, indicating large mutant-dependent differences that emphasize important specific roles for the conserved aromatic residues in BmK M1. The aromatic side chains of the Tyr5, Tyr35, and Trp47 cluster protruding from the three-stranded beta-sheet seem to be essential for the structure and function of the toxin. Trp38 and Tyr42 (located in the beta2-sheet and in the loop between the beta2- and beta3-sheets, respectively) are most likely involved in the pharmacological function of the toxin.  相似文献   

5.
Aromatic amino acid residues within kringle domains play important roles in the structural stability and ligand-binding properties of these protein modules. In previous investigations, it has been demonstrated that the rigidly conserved Trp25 is primarily involved in stabilizing the conformation of the kringle-2 domain of tissue-type plasminogen activator (K2tpA), whereas Trp63, Trp74, and Tyr76 function in omega-amino acid ligand binding, and, to varying extents, in stabilizing the native folding of this kringle module. In the current study, the remaining aromatic residues of K2tPA, viz., Tyr2, Phe3, Tyr9, Tyr35, Tyr52, have been subjected to structure-function analysis via site-directed mutagenesis studies. Ligand binding was not significantly influenced by conservative amino acid mutations at these residues, but a radical mutation at Tyr35 destabilized the interaction of the ligand with the variant kringle. In addition, as reflected in the values of the melting temperatures, changes at Tyr9 and Tyr52 generally destabilized the native structure of K2tPA to a greater extent than changes at Tyr2, Phe3, and Tyr35. Taken together, results to date show that, in concert with predictions from the crystal structure of K2tpA, ligand binding appears to rely most on the integrity of Trp63 and Trp74, and aromaticity at Tyr76. With regard to aromatic amino acids, kringle folding is most dependent on Tyr9, Trp25, Tyr52, Trp63, and Tyr76. As yet, no obvious major roles have been uncovered for Tyr2, Phe3, or Tyr35 in K2tpA.  相似文献   

6.
The three-dimensional structure of the Fab fragment of a monoclonal antibody (LNKB-2) to human interleukin-2 (IL-2) complexed with a synthetic antigenic nonapeptide, Ac-Lys-Pro-Leu-Glu-Glu-Val-Leu-Asn-Leu-OMe, has been determined at 3.0 A resolution. In the structure, four out of the six hypervariable loops of the Fab (complementarity determining regions [CDRs] L1, H1, H2, and H3) are involved in peptide association through hydrogen bonding, salt bridge formation, and hydrophobic interactions. The Tyr residues in the Fab antigen binding site play a major role in antigen-antibody recognition. The structures of the complexed and uncomplexed Fab were compared. In the antigen binding site the CDR-L1 loop of the antibody shows the largest structural changes upon peptide binding. The peptide adopts a mostly alpha-helical conformation similar to that in the epitope fragment 64-72 of the IL-2 antigen. The side chains of residues Leu 66, Val 69, and Leu 70, which are shielded internally in the IL-2 structure, are involved in interactions with the Fab in the complex studied. This indicates that antibody-antigen complexation involves a significant rearrangement of the epitope-containing region of the IL-2 with retention of the alpha-helical character of the epitope fragment.  相似文献   

7.

Background

Members of the TGF-β superfamily are characterized by a highly promiscuous ligand-receptor interaction as is readily apparent from the numeral discrepancy of only seven type I and five type II receptors available for more than 40 ligands. Structural and functional studies have been used to address the question of how specific signals can be deduced from a limited number of receptor combinations and to unravel the molecular mechanisms underlying the protein-protein recognition that allow such limited specificity.

Principal Findings

In this study we have investigated how an antigen binding antibody fragment (Fab) raised against the extracellular domain of the BMP receptor type IA (BMPR-IA) recognizes the receptor''s BMP-2 binding epitope and thereby neutralizes BMP-2 receptor activation. The crystal structure of the complex of the BMPR-IA ectodomain bound to the Fab AbD1556 revealed that the contact surface of BMPR-IA overlaps extensively with the contact surface for BMP-2 interaction. Although the structural epitopes of BMPR-IA to both binding partners coincides, the structures of BMPR-IA in the two complexes differ significantly. In contrast to the structural differences, alanine-scanning mutagenesis of BMPR-IA showed that the functional determinants for binding to the antibody and BMP-2 are almost identical.

Conclusions

Comparing the structures of BMPR-IA bound to BMP-2 or bound to the Fab AbD1556 with the structure of unbound BMPR-IA shows that binding of BMPR-IA to its interaction partners follows a selection fit mechanism, possibly indicating that the ligand promiscuity of BMPR-IA is inherently encoded by structural adaptability. The functional and structural analysis of the BMPR-IA binding antibody AbD1556 mimicking the BMP-2 binding epitope may thus pave the way for the design of low-molecular weight synthetic receptor binders/inhibitors.  相似文献   

8.
Anti-DNA antibodies play important roles in the pathogenesis of autoimmune diseases. They also represent a unique and relatively unexplored class of DNA-binding protein. Here, we present a study of conformational changes induced by DNA binding to an anti-ssDNA Fab known as DNA-1. Three crystal structures are reported: a complex of DNA-1 bound to dT3, and two structures of the ligand-free Fab. One of the ligand-free structures was determined from crystals exhibiting perfect hemihedral twinning, and the details of structure determination are provided. Unexpectedly, five residues (H97-H100A) in the apex of heavy chain complementarity-determining region 3 (HCDR3) are disordered in both ligand-free structures. Ligand binding also caused a 2-4A shift of the backbone of Tyr L92 and ordering of the L92 side-chain. In contrast, these residues are highly ordered in the Fab/dT3 complex, where Tyr H100 and Tyr H100A form intimate stacking interactions with DNA bases, and L92 forms the 5' end of the binding site. The structures suggest that HCDR3 is very flexible and adopts multiple conformations in the ligand-free state. These results are discussed in terms of induced fit and pre-existing equilibrium theories of ligand binding. Our results allow new interpretations of existing thermodynamic and mutagenesis data in terms of conformational entropy and the volume of conformational space accessible to HCDR3 in the ligand-free state. In the context of autoimmune disease, plasticity of the ligand-free antibody could provide a mechanism by which anti-DNA antibodies bind diverse host ligands, and thereby contribute to pathogenicity.  相似文献   

9.
N-glycolyl GM3 ganglioside is an attractive target antigen for cancer immunotherapy, because this epitope is a molecular marker of certain tumor cells and not expressed in normal human tissues. The murine monoclonal antibody 14F7 specifically recognizes N-glycolyl GM3 and shows no cross-reactivity with the abundant N-acetyl GM3 ganglioside, a close structural homologue of N-glycolyl GM3. Here, we report the crystal structure of the 14F7 Fab fragment at 2.5 A resolution and its molecular model with the saccharide moiety of N-glycolyl GM3, NeuGcalpha3Galbeta4Glcbeta. Fab 14F7 contains a very long CDR H3 loop, which divides the antigen-binding site of this antibody into two subsites. In the docking model, the saccharide ligand is bound to one of these subsites, formed solely by heavy chain residues. The discriminative feature of N-glycolyl GM3 versus N-acetyl GM3, its hydroxymethyl group, is positioned in a hydrophilic cavity, forming hydrogen bonds with the carboxyl group of Asp H52, the indole NH of Trp H33 and the hydroxyl group of Tyr H50. For the hydrophobic methyl group of N-acetyl GM3, this environment would not be favorable, explaining why the antibody specifically recognizes N-glycolyl GM3, but not N-acetyl GM3. Mutation of Asp H52 to hydrophobic residues of similar size completely abolished binding. Our model of the antibodycarbohydrate complex is consistent with binding data for several tested glycolipids as well as for a variety of 14F7 mutants with replaced VL domains.  相似文献   

10.
The functional epitope of thrombin recognizing thrombomodulin was mapped using Ala-scanning mutagenesis of 54 residues located around the active site, the Na(+) binding loop, the 186-loop, the autolysis loop, exosite I, and exosite II. The epitope for thrombomodulin binding is shaped as a hot spot in exosite I, centered around the buried ion quartet formed by Arg(67), Lys(70), Glu(77), and Glu(80), and capped by the hydrophobic residues Tyr(76) and Ile(82). The hot spot is a much smaller subset of the structural epitope for thrombomodulin binding recently documented by x-ray crystallography. Interestingly, the contribution of each residue of the epitope to the binding free energy shows no correlation with the change in its accessible surface area upon formation of the thrombin-thrombomodulin complex. Furthermore, residues of the epitope are strongly coupled in the recognition of thrombomodulin, as seen for the interaction of human growth hormone and insulin with their receptors. Finally, the Ala substitution of two negatively charged residues in exosite II, Asp(100) and Asp(178), is found unexpectedly to significantly increase thrombomodulin binding.  相似文献   

11.
Absorption, circular dichroism (CD), and UV resonance Raman (UVRR) spectroscopies were applied to selectively examine the environmental and structural changes of Trp and Tyr residues in the phosphatidylinositol 3-kinase (PI3K) SH3 domain induced by ligand association. Comparison of the spectra of PI3K SH3 in the presence or absence of its ligand peptide RLP1 (RKLPPRPSK) indicated that RLP1 binding changed the environment of Trp55 of the SH3 to be more hydrophilic and its H bonding weaker and that of Tyr residues to be more hydrophobic. The D21N mutant (Asp21 --> Asn) of the SH3 yielded a UV CD distinct from that of the wild type, and its spectral changes induced by RLP1 binding were smaller and different from those of the wild type in absorption, CD, and UVRR spectra, suggesting that the mutation of conserved Asp21 affected the conformation of the ligand binding cleft and thus might lead to the decrease in the ligand affinity. These data provide direct evidence for the occurrence of environmental and structural changes of PI3K SH3 by the association of a ligand and the D21N mutation.  相似文献   

12.
IgG1 b12 is a broadly neutralizing antibody against human immunodeficiency virus type 1 (HIV-1). The epitope recognized by b12 overlaps the CD4 receptor-binding site (CD4bs) on gp120 and has been a target for vaccine design. Determination of the three-dimensional structure of immunoglobulin G1 (IgG1) b12 allowed modeling of the b12-gp120 interaction in which the protruding third complementarity-determining region (CDR) of the heavy chain (H3) was crucial for antibody binding. In the present study, extensive mutational analysis of the antigen-binding site of Fab b12 was carried out to investigate the validity of the model and to identify residues important for gp120 recognition and, by inference, key to the anti-HIV-1 activity of IgG1 b12. In all, 50 mutations were tested: 40 in H3, 4 each in H2 and L1, and 2 in L3. The results suggest that the interaction of gp120 with H3 of b12 is crucially dependent not only on a Trp residue at the apex of the H3 loop but also on a number of residues at the base of the loop. The arrangement of these residues, including aromatic side chains and side chains that hydrogen bond across the base of the loop, may rigidify H3 for penetration of the recessed CD4-binding cavity. The results further emphasize the importance to gp120 binding of a Tyr residue at the apex of the H2 loop that forms a second finger-like structure and a number of Arg residues in L1 that form a positively charged, shelf-like structure. In general, the data are consistent with the b12-gp120 interaction model previously proposed. At the gene level, somatic mutation is seen to be crucial for the generation of many of the structural features described. The Fab b12 mutants were also tested against the b12 epitope-mimic peptide B2.1, and the reactivity profile had many similarities but also significant differences from that observed for gp120. The paratope map of b12 may facilitate the design of molecules that are able to elicit b12-like activities.  相似文献   

13.
Spronk SA  Carlson HA 《Proteins》2011,79(7):2247-2259
β-Site amyloid precursor protein cleaving enzyme 1 (BACE1) is a potential target for treating Alzheimer's disease. BACE1's binding site is partially covered by a flexible loop on its N-terminal domain, known as the "flap," which has been found in several conformations in crystal structures of BACE1 and other aspartyl proteases. The side chain of the invariant residue Tyr71 on the flap adopts several rotameric orientations, leading to our hypothesis that the orientation of this residue dictates the movement and conformations available to the flap. We investigated this hypothesis by performing 220 ns of molecular dynamics simulations of bound and unbound wild-type BACE1 as well as the unbound Y71A mutant. Our findings indicate that the flap exhibits various degrees of mobility and adopts different conformations depending on the Tyr71 orientation. Surprisingly, the "self-inhibited" form is stable in our simulations, making it a reasonable target for drug design. The alanine mutant, lacking a large side chain at position 71, displays significant differences in flap dynamics from wild type, freely sampling very open and closed conformations. Our simulations show that Tyr71, in addition to its previously determined functions in catalysis and substrate binding, has the important role of modulating flap conformations in BACE1.  相似文献   

14.
The antigen-binding fragment Fab-YADS2 recognizes vascular endothelial growth factor (VEGF) and was derived from a library with chemical diversity restricted to only four amino acids (Tyr, Ser, Ala and Asp). The structure of the Fab:antigen complex revealed that the structural paratope is dominated by Tyr side-chains. Isothermal titration calorimetry and cell-based assays show that restricted chemical diversity does not limit the affinity or specificity of Fab-YADS2, which behaves in a manner comparable to natural antibodies. Mutagenesis experiments reveal that the functional paratope is dominated by Tyr, which represents 11 of the 15 functionally important residues. However, mutagenesis experiments also indicate that substitution of any of these tyrosine residues by Phe does not significantly affect binding to VEGF. Furthermore, saturation mutagenesis shows that replacement of three functionally important tyrosine residues by combinations of other hydrophobic residues is not only tolerated, but can actually improve affinity. The results support a model for na?ve antigen recognition in which large Tyr side-chains establish binding contacts with antigen, and small Ser and Ala side-chains serve as auxiliaries that help to position Tyr in favorable binding conformations. While Tyr may not be optimal for any particular antigen contact, it is nonetheless capable of mediating favorable interactions with a diverse array of surfaces. Furthermore, the side-chain hydroxyl group makes Tyr significantly more hydrophilic than Phe and other hydrophobic amino acids. Increased hydrophilicity may reduce non-specific binding in the unbound state, and this may be critical for a na?ve repertoire that is exposed to a diverse range of potential antigenic surfaces. The results show that the chemical nature of Tyr endows the amino acid with a privileged role in antigen recognition, and this likely explains the high abundance of Tyr in natural antigen-binding sites.  相似文献   

15.
β-Secretase (BACE1) is an attractive drug target for Alzheimer disease. However, the design of clinical useful inhibitors targeting its active site has been extremely challenging. To identify alternative drug targeting sites we have generated a panel of BACE1 monoclonal antibodies (mAbs) that interfere with BACE1 activity in various assays and determined their binding epitopes. mAb 1A11 inhibited BACE1 in vitro using a large APP sequence based substrate (IC(50) ~0.76 nm), in primary neurons (EC(50) ~1.8 nm), and in mouse brain after stereotactic injection. Paradoxically, mAb 1A11 increased BACE1 activity in vitro when a short synthetic peptide was used as substrate, indicating that mAb 1A11 does not occupy the active-site. Epitope mapping revealed that mAb 1A11 binds to adjacent loops D and F, which together with nearby helix A, distinguishes BACE1 from other aspartyl proteases. Interestingly, mutagenesis of loop F and helix A decreased or increased BACE1 activity, identifying them as enzymatic regulatory elements and as potential alternative sites for inhibitor design. In contrast, mAb 5G7 was a potent BACE1 inhibitor in cell-free enzymatic assays (IC(50) ~0.47 nm) but displayed no inhibitory effect in primary neurons. Its epitope, a surface helix 299-312, is inaccessible in membrane-anchored BACE1. Remarkably, mutagenesis of helix 299-312 strongly reduced BACE1 ectodomain shedding, suggesting that this helix plays a role in BACE1 cellular biology. In conclusion, this study generated highly selective and potent BACE1 inhibitory mAbs, which recognize unique structural and functional elements in BACE1, and uncovered interesting alternative sites on BACE1 that could become targets for drug development.  相似文献   

16.
The high resolution crystal structure of an N-terminal fragment of the IGF-I receptor, has been reported. While this fragment is itself devoid of ligand binding activity, mutational analysis has indicated that its N terminus (L1, amino acids 1-150) and the C terminus of its cysteine-rich domain (amino acids 190-300) contain ligand binding determinants. Mutational analysis also suggests that amino acids 692-702 from the C terminus of the alpha subunit are critical for ligand binding. A fusion protein, formed from these fragments, binds IGF-I with an affinity similar to that of the whole extracellular domain, suggesting that these are the minimal structural elements of the IGF-I binding site. To further characterize the binding site, we have performed structure directed and alanine-scanning mutagenesis of L1, the cysteine-rich domain and amino acids 692-702. Alanine mutants of residues in these regions were transiently expressed as secreted recombinant receptors and their affinity was determined. In L1 alanine mutants of Asp(8), Asn(11), Tyr(28), His(30), Leu(33), Leu(56), Phe(58), Arg(59), and Trp(79) produced a 2- to 10-fold decrease in affinity and alanine mutation of Phe(90) resulted in a 23-fold decrease in affinity. In the cysteine-rich domain, mutation of Arg(240), Phe(241), Glu(242), and Phe(251) produced a 2- to 10-fold decrease in affinity. In the region between amino acids 692 and 702, alanine mutation of Phe(701) produced a receptor devoid of binding activity and alanine mutations of Phe(693), Glu(693), Asn(694), Leu(696), His(697), Asn(698), and Ile(700) exhibited decreases in affinity ranging from 10- to 30-fold. With the exception of Trp(79), the disruptive mutants in L1 form a discrete epitope on the surface of the receptor. Those in the cysteine-rich domain essential for intact affinity also form a discrete epitope together with Trp(79).  相似文献   

17.
A highly selective, high affinity recombinant anti-testosterone Fab fragment has been generated by stepwise optimization of the complementarity-determining regions (CDRs) by random mutagenesis and phage display selection of a monoclonal antibody (3-C(4)F(5)). The best mutant (77 Fab) was obtained by evaluating the additivity effects of different independently selected CDR mutations. The 77 Fab contains 20 mutations and has about 40-fold increased affinity (K(d) = 3 x 10(-10) m) when compared with the wild-type (3-C(4)F(5)) Fab. To obtain structural insight into factors, which are needed to improve binding properties, we have determined the crystal structures of the mutant 77 Fab fragment with (2.15 A) and without testosterone (2.10 A) and compared these with previously determined wild-type structures. The overall testosterone binding of the 77 Fab is similar to that of the wild-type. The improved affinity and specificity of the 77 Fab fragment are due to more comprehensive packing of the testosterone with the protein, which is the result of small structural changes within the variable domains. Only one important binding site residue Glu-95 of the heavy chain CDR3 is mutated to alanine in the 77 Fab fragment. This mutation, originally selected from the phage library based on improved specificity, provides more free space for the testosterone D-ring. The light chain CDR1 of 77 Fab containing eight mutations has the most significant effect on the improved affinity, although it has no direct contact with the testosterone. The mutations of CDR-L1 cause a rearrangement in its conformation, leading to an overall fine reshaping of the binding site.  相似文献   

18.
A three-dimensional model of the neuropeptide Y (NPY) - rat Y1 (rY1) receptor complex and of the NPY 13-36 - rY1 receptor complex was constructed by molecular modeling based on the electron density projection map of rhodopsin and on site-directed mutagenesis studies of neuropeptide receptors. In order to further guide the modeling, the nucleotide sequences encoding Trp287, Cys295 and His297 in the third extracellular loop of the rY1 receptor, were altered by site-directed mutagenesis experiments. Single-point mutated receptors were expressed in COS-7 cells, and tested for their ability to bind radio labelled NPY (3H-NPY). Mutations of Trp287 and His297 completely abolished binding of 3H-NPY. The Cys295Ser mutation only slightly decreased the binding of 3H-NPY, suggesting that the involvement of Cys295 in a disulphide bond is not essential for maintaining the correct three-dimensional structure of the binding site for NPY. Molecular dynamics simulations of NPY-rY1 receptor interactions suggested that Asp199, Asp103 and Asp286 in the receptor interact, respectively, with Lys4, Arg33 and Arg35 of NPY. The simulations also suggested that His297 acts as a hydrogen acceptor from Arg35 in NPY, and that Tyr1 of NPY interacts with a binding pocket on the receptor formed by Asn115, Asp286, Trp287 and His297. Tyr36 in NPY interacted both with Thr41 and Tyr99 via hydrogen bonds, and also with Asn296, His297 and Phe301. The present study suggests that amino acid residues at the extracellular end of the transmembrane helices and in the extracellular loops are strongly involved in binding to NPY and NPY13-36.Electronic Supplementary Material available.  相似文献   

19.
Beta-APP cleaving enzyme (BACE) is responsible for the first of two proteolytic cleavages of the APP protein that together lead to the generation of the Alzheimer's disease-associated Abeta peptide. It is widely believed that halting the production of Abeta peptide, by inhibition of BACE, is an attractive therapeutic modality for the treatment of Alzheimer's disease. BACE is an aspartyl protease, and there is significant effort in the pharmaceutical community to apply traditional design methods to the development of active site-directed inhibitors of this enzyme. We report here the discovery of a ligand binding pocket within the catalytic domain of BACE that is distinct from the enzymatic active site (i.e., an exosite). Peptides, initially identified from combinatorial phage peptide libraries, contain the sequence YPYF(I/L)P(L/I) and bind specifically to this exosite, even in the presence of saturating concentrations of active site-directed inhibitors. Binding of peptides to the BACE exosite leads to a concentration-dependent inhibition of proteolysis for APP-related, protein-based substrates of BACE. The discovery of this exosite opens new opportunities for the identification and development of novel and potentially selective small molecule inhibitors of BACE that act through exosite, rather than active site, binding interactions.  相似文献   

20.
Cai S  Zheng X  Dong X 《Journal of bacteriology》2011,193(19):5199-5206
Previously, we found that exoglucanase Cel48A from Cellulosilyticum ruminicola H1 bound intensively to Avicel; however, no known carbohydrate-binding module (CBM) was observed in the protein. Bioinformatics suggested that a C-terminal fragment of 127 amino acids, named the Cellulosilyticum-specific paralogous module (CPM), could function in binding. CPM-appended proteins are all putative (hemi)cellulases from Cellulosilyticum spp. In the present work, we demonstrated that Cel48A without the CPM retained only exoglucanase activity and lost the Avicel-binding ability, while the isolated CPM exhibited a high affinity for Avicel. In addition, the CPM bound to chitin, but not to soluble polysaccharides, making it a type A CBM, which binds only insoluble polysaccharides. Phylogenetic analysis clustered the CPM and its homologs as a separate branch that was distantly related to CBM subfamilies 3a (28% identity), 3b (24% identity), and 3c (21% identity). Sequence alignment revealed distinct secondary structures of the new CBM 3 group, in particular, a conserved Pro66-Trp67 insert preceding strand β4', a deletion preceding strand β6, and incomplete strands β8 and β9. An alanine scan for six aromatic and three nonaromatic amino acid residues (D66, P66, and R111) by site-directed mutagenesis determined that Phe62, Pro66, Trp67, Tyr68, Arg111, and Trp117 were the functional residues for binding. Among them, Phe62, Pro66, and Trp67 were the newly determined key sites in the CPM for binding. Three-dimensional homolog modeling revealed two types of substrate-binding sites, planar and groove, in the CPM. Thus, a new subfamily, CBM family 3d, is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号