首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
The silver(I) complex, [Ag(2,9-dimethyl-1,10-phenanthroline)(2)](NO(3)) · H(2)O, has been synthesized and characterized by physicochemical and spectroscopic methods. The binding interactions of this complex with calf thymus DNA (CT-DNA) were investigated using emission, absorption, circular dichroism, viscosity measurements, and gel electrophoresis studies. The calculated binding constant, K(b), obtained from UV-vis absorption studies was 5.3 ± 0.2 × 10(4) M(-1). In fluorimetric studies, the enthalpy and entropy of the reaction between the complex and CT-DNA showed hydrophobic interaction. In addition, in the circular dichroism spectrum, silver(I) complex induces a B → A structural transition of CT-DNA. Gel electrophoresis studies demonstrated that this complex has ability to cleave the supercoiled plasmid DNA. All these results suggest that the complex interacts with CT-DNA via partial intercalative mode of binding.  相似文献   

2.
In this study, fluorescence emission spectra, UV–vis absorption spectra, ethidium bromide (EB)-competition experiment, and iodide quenching experiment were used for the interaction study of the Fish salmon DNA (FS-DNA) with [Pr(dmp)2Cl3(OH2)] where dmp is 2,9-dimethyl 1,10-phenanthroline. The binding constant and the number of binding sites of the complex with FS-DNA were 6.09?±?0.04 M?1 and 1.18, respectively. The free energy, enthalpy, and entropy changes (ΔG°, ΔH°, and ΔS°) in the binding process of the Pr(III) complex with FS-DNA were –8.02?kcal mol?1, +39.44?kcal mol?1, and +159.56?cal mol?1 K?1, respectively. Based on these results, the interaction process between FS-DNA with [Pr(dmp)2Cl3(OH2)] was spontaneous and the main binding interaction force was groove binding mode. Also, Fluorescence and electronic absorption spectroscopy were used in order to evaluate the binding characteristics, stoichiometry, and interaction mode of praseodymium(III) (Pr(III)) complex with bovine serum albumin (BSA). Title complex showed good binding propensity to BSA presenting moderately high Kb values. The fluorescence quenching of BSA by Pr(III) complex has been observed to be the static process. The positive ΔH° and ΔS° values showed that the hydrophobic interaction is the main force in the binding of Pr(III) complex and BSA. Eventually, the average aggregation number, <J>, of BSA potentially induced by title complex confirmed the 1:1 stoichiometry for title complex-BSA adducts. In vitro, antimicrobial activity of title complex was indicated that the complex is more active against both Escherichia coli and Enterococcus faecalis bacterial strains than Staphylococcus aureus, and Pseudomonas aeruginosa.

Communicated by Ramaswamy H. Sarma  相似文献   


3.
A gold(III) complex possessing 5,6-dimethyl-1,10-phenanthroline (5,6DMP) was synthesized and fully characterized using standard spectroscopic techniques, as well as X-ray crystallography and elemental analysis. The complex [(5,6DMP)AuCl2][BF4] (2) was found to possess a distorted square planar geometry about the gold(III) center, commonplace for d8 Au(III) cations possessing sterically un-hindered polypyridyl ligands. Compound 2 was evaluated for its potential use as an anticancer therapeutic. It was determined that the complex is stable in phosphate buffer over a 24-hour period, thought it does undergo rapid reduction in the presence of equimolar amounts of reduced glutathione (GSH) and ascorbic acid. The DNA binding and in vitro tumor cytotoxicity of the title compound 2 were also determined. It was found to undergo weak and reversible binding to calf thymus DNA, and was more cytotoxic towards a panel of human cancer cell lines than the commonly used chemotherapy agent cisplatin. Cytotoxicity experiments with the free 5,6DMP ligand indicate that the ligand has IC50 values that are slightly lower than those observed for the gold complex (2), and coupled with the fact that the ligand appears to be released from the gold(III) metal center in reducing environments, this suggests the ligand itself may play an important role in the antitumor activity of the parent gold complex.  相似文献   

4.
To evaluate the biological preference of [Yb(phen)2(OH2)Cl3](H2O)2 (phen is 1,10-phenanthroline) for DNA, interaction of Yb(III) complex with DNA in Tris–HCl buffer is studied by various biophysical and spectroscopic techniques which reveal that the complex binds to DNA. The results of fluorescence titration reveal that [Yb(phen)2(OH2)Cl3](H2O)2 has strongly quenched in the presence of DNA. The binding site number n, apparent binding constant K b, and the Stern–Volmer quenching constant K SV are determined. ΔH 0, ΔS 0, and ΔG 0 are obtained based on the quenching constants and thermodynamic theory (ΔH 0?>?0, ΔS 0?>?0, and ΔG 0?<?0). The experimental results show that the Yb(III) complex binds to DNA by non-intercalative mode. Groove binding is the preferred mode of interaction for [Yb(phen)2(OH2)Cl3](H2O)2 to DNA. The DNA cleavage results show that in the absence of any reducing agent, Yb(III) complex can cleave DNA. The antimicrobial screening tests are also recorded and give good results in the presence of Yb(III) complex.  相似文献   

5.
The binding of [Dy(dmp)2Cl3(OH2)], where dmp is 2,9-dimethyl 1,10-phenanthroline, with Fish salmon DNA (FS-DNA) is investigated by absorption and emission spectroscopy, quenching studies, salt dependent, and gel electrophoresis. The binding constant (Kb) of the interaction is calculated as (1.27 ± .05) × 105 M?1 from absorption spectral titration data. The Stern–Volmer constant (KSV), thermodynamic parameters involves ΔG°, ?H°, and ?S° are calculated by fluorescent data and Van’t Hoff equation. The thermodynamic studies show that the reaction for the binding of the complex with FS-DNA is endothermic and entropically driven (Δ > 0, ΔH° > 0). The effect of the complex concentration on FS-DNA cleavage reactions is also investigated by gel electrophoresis. Furthermore, the Dy(III) complex has been screened for its antibacterial activity. The experimental results suggest that the Dy(III) complex binds significantly to FS-DNA by hydrophobic groove binding mode and the complex has more efficient antibacterial activity compared to its metal salt.  相似文献   

6.
BackgroundThere is a crucial need for finding and developing new compounds as the anticancer and antimicrobial agents with better activity, specific target, and less toxic side effects.ObjectivesBase on the potential anticancer properties of lanthanide complexes, in the paper, the biological applications of terbium (Tb) complex, containing 2,9-dimethyl- 1,10-phenanthroline (Me2Phen) such as anticancer, antimicrobial, DNA cleavage ability, the interaction with FS-DNA (Fish-Salmon DNA) and BSA (Bovine Serum Albumin) was examined.MethodsThe interaction of Tb-complex with BSA and DNA was studied by emission spectroscopy, absorption titration, viscosity measurement, CD spectroscopy, competitive experiments, and docking calculation. Also, the ability of this complex to cleave DNA was reported by gel electrophoresis. Tb-complex was concurrently screened for its antibacterial activities by different methods. Besides, the nanocarriers of Tb-complex (lipid nanoencapsulation (LNEP) and the starch nanoencapsulation (SNEP)), as active anticancer candidates, were prepared. MTT technique was applied to measure the antitumor properties of these compounds on human cancer cell lines.ResultsThe experimental and docking results suggest significant binding between DNA as well as BSA with terbium-complex. Besides, groove binding plays the main role in the binding of this compound with DNA and BSA. The competitive experiment with hemin demonstrated that the terbium complex was bound at site III of BSA, which was confirmed by the docking study. Also, Tb-complex was concurrently screened for its DNA cleavage, antimicrobial, and anticancer activities. The anticancer properties of LNEP and SNEP are more than the terbium compound.ConclusionsTb-complex can bond to DNA/BSA with high binding affinity. Base on biological applications of Tb-complex, it can be concluded that this complex and its nanocarriers can suggest as novel anticancer, antimicrobial candidates.  相似文献   

7.
Aims:  To investigate the in vitro antibacterial activity and antifungal mode of action of flocculosin, a cellobiose lipid produced by Pseudozyma flocculosa .
Methods and Results:  When tested against clinical bacterial isolates, the compound was particularly active against Gram-positive bacteria and its effect was not mitigated against isolates known as resistant to other antibiotics. The antifungal activity of flocculosin was found to be rapid and concentration-dependent. At lethal concentrations against Candida albicans , flocculosin caused a rapid leakage of intracellular potassium and inhibited acidification of the medium by plasma membrane ATPases suggesting a physical rather than a biochemical effect. TEM observations of cells exposed 6 h to flocculosin revealed disrupted membranes and disorganized mitochondria.
Conclusions:  Data obtained in this study confirm that flocculosin acts by disrupting the membrane surface of sensitive micro-organisms.
Significance and Impact of the Study:  The elucidation of an antifungal mode of action of flocculosin can be exploited in furthering its antimicrobial potential against fungi and bacteria whose cell membranes are particularly sensitive to the action of the molecule.  相似文献   

8.
The complex [Mn(L)(NO3)2(H2O)2] (1) (L=2H-5-hydroxy-1,2,5-oxadiazo[3,4-f]1,10-phenanthroline) was synthesized and characterized by elemental analysis, IR and UV. The crystal and molecular structure of 1 was determined by single-crystal X-ray diffraction; crystal data: light yellow, monoclinic, space group P21/n, Z=4, a=7.432(2) Å, b=9.582(3) Å, c=23.445(7) Å, β=90.519(5)°. The Mn atom in 1 is hexa-coordinated in a distorted octahedral arrangement by two N atoms of the ligand L and four O atoms of two water molecules and two nitrate anions. Biological tests in vitro showed that 1 has significant antitumor activity against HL-60, KB, Hela and BGC-823 cells. The interaction of 1 with calf thymus DNA was investigated by absorption titration, thermal denaturation and viscosity measurements. The results suggest that 1 binds with DNA by intercalating via the ligand L.  相似文献   

9.
[C20H17N3O2] and cobalt (II) complex [Co(L2)(MeOH)2].ClO4, (L2 = 4-((E)-1-((2-(((E)-pyridin-2-ylmethylene) amino) phenyl) imino) ethyl) benzene-1, 3-diol) novel Schiff base has been synthesiszed and chracterized by Fourier transform infrared, UV–vis, 1H-NMR spectroscopy, and elemental analysis techniques. The interaction of Co(II) complex with DNA and BSA was investigated by electronic absorption spectroscopy, fluorescence spectroscopy, circular dichroism, and thermal denaturation studies. Our experiments indicate that this complex could strongly bind to CT-DNA via minor groove mechanism. In addition, fluorescence spectrometry of BSA with the complex showed that the fluorescence quenching mechanism of BSA was of static type. The complex exhibited significant in vitro cytotoxicity against three human cancer cell lines (JURKAT, SKOV3, and U87). The molecular docking experiment effectively proved the binding of complex to DNA and BSA. Finally, antibacterial assay over gram-positive and gram-negative pathogenic bacterial strains was studied.  相似文献   

10.
The neutral mononuclear cobalt(II) complex with sparfloxacin has been prepared and characterized with physicochemical, spectroscopic and electrochemical techniques, and molecular mechanics calculations. The interaction of the complex with calf-thymus DNA has been investigated with UV spectroscopy, cyclic voltammetry, and competitive studies with ethidium bromide. The antimicrobial activity of the complex has been tested against three microorganisms.  相似文献   

11.
The complex [Mn(L)(NO3)2(H2O)2] (1) (L=2H-5-hydroxy-1,2,5-oxadiazo[3,4-f]1,10-phenanthroline) was synthesized and characterized by elemental analysis, IR and UV. The crystal and molecular structure of 1 was determined by single-crystal X-ray diffraction; crystal data: light yellow, monoclinic, space group P21/n, Z=4, a=7.432(2) Å, b=9.582(3) Å, c=23.445(7) Å, β=90.519(5)°. The Mn atom in 1 is hexa-coordinated in a distorted octahedral arrangement by two N atoms of the ligand L and four O atoms of two water molecules and two nitrate anions. Biological tests in vitro showed that 1 has significant antitumor activity against HL-60, KB, Hela and BGC-823 cells. The interaction of 1 with calf thymus DNA was investigated by absorption titration, thermal denaturation and viscosity measurements. The results suggest that 1 binds with DNA by intercalating via the ligand L.  相似文献   

12.
In order to evaluate biological potential of a novel synthesized complex [Nd(dmp)2Cl3.OH2] where dmp is 29-dimethyl 110-phenanthroline, the DNA-binding, cleavage, BSA binding, and antimicrobial activity properties of the complex are investigated by multispectroscopic techniques study in physiological buffer (pH 7.2).The intrinsic binding constant (Kb) for interaction of Nd(III) complex and FS–DNA is calculated by UV–Vis (Kb = 2.7 ± 0.07 × 105) and fluorescence spectroscopy (Kb = 1.13 ± 0.03 × 105). The Stern–Volmer constant (KSV), thermodynamic parameters including free energy change (ΔG°), enthalpy change (?H°), and entropy change (?S°), are calculated by fluorescent data and Vant’ Hoff equation. The experimental results show that the complex can bind to FS–DNA and the major binding mode is groove binding. Meanwhile, the interaction of Nd(III) complex with protein, bovine serum albumin (BSA), has also been studied by using absorption and emission spectroscopic tools. The experimental results show that the complex exhibits good binding propensity to BSA. The positive ΔH° and ?S° values indicate that the hydrophobic interaction is main force in the binding of the Nd(III) complex to BSA, and the complex can quench the intrinsic fluorescence of BSA remarkably through a static quenching process. Also, DNA cleavage was investigated by agarose gel electrophoresis that according to the results cleavage of DNA increased with increasing of concentration of the complex. Antimicrobial screening test gives good results in the presence of Nd(III) complex system.  相似文献   

13.
A new polypyridyl ligand MPPIP {MPPIP=2-(3'-phenoxyphenyl)imidazo[4,5-f]-[1,10]phenanthroline} and its ruthenium(II) complexes, [Ru(bpy)(2)MPPIP](2+) (1) (bpy=2,2'-bipyridine) and [Ru(phen)(2)MPPIP](2+) (2) (phen=1,10-phenanthroline) have been synthesized and characterized. The binding of the two complexes to calf thymus DNA (CT-DNA) has been investigated with spectrophotometric methods, viscosity measurements, as well as equilibrium dialysis and circular dichroism spectroscopy. The results suggest that both complexes bind to CT-DNA through intercalation, and enantioselectively interact with CT-DNA in a way. However, complex 2 is a much better candidate as an enantioselective binder to CT-DNA than complex 1. When irradiated at 365nm, both complexes have also been found to promote the photocleavage of plasmid pBR322 DNA.  相似文献   

14.
ObjectivesIn this research, the biological properties of the yttrium (III) (Y) complex, with 2,9-dimethyl- 1,10-phenanthroline (Me2Phen) ligand, were examined for in vitro fish DNA (FS-DNA)/ bovine serum albumin (BSA) interactions, DNA-cleavage, anticancer and antibacterial activities.MethodsMulti-spectrophotometric techniques and computational calculations were used for the interaction studies of the BSA and FS-DNA with the Y-complex. Absorption and fluorescence spectroscopy methods were used to define thermodynamic parameters, the binding constants (Kb), and the probable binding mechanism. Also, the DFT (density functional theory) study and molecular docking calculation of the Y-complex were done. Besides, the nanocarriers of Y-complex (lipid nanoencapsulation (LNEP) and the starch nanoencapsulation (SNEP)), as active anticancer candidates, were prepared. Finally, DNA-cleavage, anticancer, and antibacterial activities of this complex were investigated.ResultsThe absorption and fluorescence measurements were exhibited that the Y-complex has a high binding affinity to FS-DNA and BSA through a static mechanism. The negative thermodynamic parameter values for both DNA/BSA binding were confirmed that the hydrogen bonds and van der Waals forces played an essential role in the spontaneous bonding procedure. The site marker competitive studies for BSA confirmed that the Y-complex bonds to the sub-domain IB of protein (site III) on BSA, which was entirely agreement by docking calculation. The complex has displayed efficient DNA cleavage, antifungal and antibacterial activities. The anticancer activity of the Y-complex and its starch/lipid nano-encapsulated was carried out in cancer cell lines, which exposed considerably high activity.ConclusionsThus, Y-complex can be transported professionally through BSA in the blood and bonds in the groove of DNA. Base on biological applications of the Y-complex, it can be concluded that this complex and its nanocarriers can suggest as novel anticancer and antibacterial candidates.  相似文献   

15.
In this paper, spectral and structural characterizations of a new dinuclear copper(II) complex (1), formulated as [Cu2(3-(thiophen-2-yl)-1,10-phenanthroline)2(μ-oxalate)(DMF)2](ClO4)2 (DMF = N,N′-dimethylformamide), have been described. Two five-coordinate copper(II) centers are bridged by a four-dentate oxalate dianion forming a planar molecular geometry with the Cu-Cu separation of 5.117(4) Å. The two ligands in 1 adopt a trans configuration to each other and two monodentate DMF molecules are positioned at each side of the molecular plane. In addition, typical π-π stacking interactions are found between adjacent phenanthroline and thiophene rings forming a layered packing structure. A compressed pyramidal configurational alteration is observed for each copper(II) center when the temperature is decreased from 291(2) to 100(2) K.  相似文献   

16.
AIMS: To develop a simple, reproducible in vitro static diffusion method using cellulose disks and defined species to test antimicrobial efficacy of wound dressings. METHODS AND RESULTS: Cellulose disks were inoculated by immersion in cell suspensions of target species Staphylococcus epidermidis, Candida albicans and Fusobacterium nucleatum. Test and control wound dressings were cut into equal sized squares (25 x 25 mm) and applied to the surface of 10-mm thick tryptone yeast extract agar on test beds. Following a 2-h equilibration period, inoculated cellulose disks were inserted (one per dressing) at the interface between dressing and agar surface and a small weight applied over each square. At various sampling times, disks were removed and surviving cells enumerated by viable counts. Disk to disk variation for microbial loading was assessed using S. epidermidis for both initial (n = 16) and standard treatment (n = 16) conditions. The coefficient of variation was low (<5%) indicating good reproducibility for cell loading and treatment position on the test bed. Replicate assays (n = 6) using S. epidermidis and oxyzyme gels produced similar kill rates with low scatter (R2 > 0.9) indicating good reproducibility between assays. Significant differences (P < 0.05) in kill rates were observed for different target species, types of dressing and test bed conditions (+/-blood and nutrients). CONCLUSIONS: The method is reproducible and useful in tracking the death kinetics of test species, enabling the comparison of different types of dressing. SIGNIFICANCE AND IMPACT OF THE STUDY: The reported method has significant advantages over established test procedures; it can be applied equally across a wide range of target species (including anaerobes and yeasts), a wide range of conditions, and different types of surface dressings, including those relying upon oxygen diffusion.  相似文献   

17.
Two new ruthenium(II) complexes of Schiff base ligands (L) derived from cinnamaldehyde and ethylenediamine formulated as [Ru(L)(bpy)2](ClO4)2, where L1 = N,N’-bis(4-nitrocinnamald-ehyde)ethylenediamine and L2 = N,N’-bis(2-nitrocinnamaldehyde)-ethylenediamine for complex 1 and 2, respectively, were isolated in pure form. The complexes were characterized by physicochemical and spectroscopic methods. The electrochemical behavior of the complexes showed the Ru(III)/Ru(II) couple at different potentials with quasi-reversible voltammograms. The interaction of the complexes with calf thymus DNA (CT-DNA) using absorption, emission spectral studies and electrochemical techniques have been used to determine the binding constant, Kb and the linear Stern–Volmer quenching constant, KSV. The results indicate that the ruthenium(II) complexes interact with CT-DNA strongly in a groove binding mode. The interactions of bovine serum albumin (BSA) with the complexes were also investigated with the help of absorption and fluorescence spectroscopy tools. Absorption spectroscopy proved the formation of a ground state BSA-[Ru(L)(bpy)2](ClO4)2 complex. The antibacterial study showed that the Ru(II) complexes (1 and 2) have better activity than the standard antibiotics but weak activity than the ligands.  相似文献   

18.
The trend in DNA-binding affinities and the spectral properties of a series of Ru(II) polypyridyl complexes, [Ru(bpy)2(dmdpq)]2+ (1), [Ru(bpy)2(dpq)]2+ (2), [Ru(bpy)2(cndpq)]2+ (3) (bpy = 2,2′-bipyridine; dpq = dipyrido[3,2-d:2′,3′-f]quinoxaline; dmdpq = di-methyl-dpq; dcdpq = di-cyano-dpq), have been experimentally and theoretically investigated. The DNA-binding constants Kb of the complexes were determined systematically with spectrophotometric titration. The density functional theory (DFT) and time-dependent DFT (TDDFT) calculations were carried out for these complexes. The experimental results show that these complexes bind to DNA in intercalation mode, and the order of their intrinsic DNA-binding constants Kb is Kb(1) < Kb(2) ? Kb(3). The substituents on the intercalative ligands of the complexes play a very important role in the control of DNA-binding affinities of the complexes, in particular, the stronger electron-withdrawing substituent (-CN) on the intercalative ligand can greatly improve the DNA-binding property of the derivative complex. The trend in DNA-binding affinities as well as the spectral properties of metal-ligand charge-transition (1MLCT) of this series of complexes can be reasonably explained by applying the DFT and TDDFT calculations and the frontier molecular orbital theory.  相似文献   

19.
Theoretical studies on the DNA-binding, DNA-photocleavage and spectral properties of Co(III) polypyridyl complexes [Co(phen)2(L)]3+ (L = pip, hpip, hnaip) have been carried out, using the density functional theory (DFT), Hartree-Fock (HF) and configuration interaction singles (CIS) methods. The optimized geometric structures of these Co(III) complexes in aqueous solution are more close to experimental data than those in vacuo at the B3LYP/LanL2DZ level. Based on the optimized geometric structures in solution, the electronic structures of these Co(III) complexes were analyzed and the trend in the DNA-binding constants (Kb) was reasonably explained. In particular, via the analysis of natural charges of the complexes in ground state and excited state, it is very interesting to find the following: under UV or visible light irradiation, the Co(Ш) polypyridyl complexes undergo an intra-molecular electron transfer from S0 state to T1 state, and the positive charges on the main-ligand in the T1 state are greatly increased, so as to form a radical cation with strong oxidation ability. Meanwhile, the change in geometry of the complexes under light irradiation also helps to the radical cation easily approaching and further oxidating DNA-base-pairs. These results offer the theoretical explanation for the photo-induced oxidation-reduction mechanism which was experimentally proposed on DNA-photocleavage by Co(Ш) polypyridyl complexes. In addition, the electronic absorption spectra of these complexes were calculated and simulated in aqueous solution using the time dependent DFT (TDDFT) method, in satisfying agreement with experimental results, and the properties of experimental absorption bands have been theoretically explained in detail.  相似文献   

20.
Antibacterial and cytotoxic activities of Euphorbia balsamifera, fractions and pure compounds were evaluated. The cytotoxic assays for HCT116, HePG2 and MCF7 showed a significant IC50: 54.7 and 76.2 µg/mL of non-polar fraction “n-hexane” against HCT116 and HePG2, respectively. Antibacterial results revealed that plant fractions exhibited significant potential against the tested pathogens than the total extract where n-butanol and ethyl acetate fractions showed significant antibacterial activity (P < 0.05) against tested bacterial strains. Isolation and structure determination of compounds from n-hexane and n-butanol fractions were performed. From n-hexane fraction, 29-nor-cycloartanol (1), lanost-8-en-3-ol (2a), cycloartanol (2b) and kampferol-3,4'-dimethyl ether (3) were isolated and structurally identified, along with 24 compounds were tentatively identified by GC–MS. From the polar n-butanol fraction, 4-O-β-D-glucopyranosyl-2-hydroxy-6-methoxyacetophenone (4), 4-O-α-L-rhamnosyl-(1 → 6)-β-D-glucopyranosyl-2-hydroxy-6methoxy-acetophenone (5), quercetin-3-O-glucopyranoside (6) and isoorientin (7) were assigned. Structures of the obtained compounds were determined by nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry. Except compounds 1 and 5, all reported compounds announced antibacterial efficiency. Compound 2 showed selectively the highest activity against Enterococcus faecalis (22 ± 0.13 mm), meanwhile 4-O-β-D-glucopyranosyl-2-hydroxy-6-methoxyacetophenone (4) showed broadly the highest antibacterial activity with MIC of 1.15–1.88 mg/mL against the test Gram-positive and Gram-negative bacteria. Cytotoxic assays indicated that kampferol-3,4'-dimethyl ether (3) exhibited the highest activity with matching IC50 values to doxorubicin; 111.46, 42.67 and 44.90 µM against HCT116, HePG2 and MCF7, respectively, however, it is toxic on retina normal cell line RPE1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号