首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
Nigericin is a monocarboxylic polyether molecule described as a mobile K+ ionophore unable to transport Li+ and Cs+ across natural or artificial membranes. This paper shows that the ion carrier molecule forms complexes of equivalent energy demands with Li+, Cs+, Na+, Rb+, and K+. This is in accordance with the similar values of the complex stability constants obtained from nigericin with the five alkali metal cations assayed. On the other hand, nigericinalkali metal cation binding isotherms show faster rates for Li+ and Cs+ than for Na+, K+, and Rb+, in conditions where the carboxylic proton does not dissociate. Furthermore, proton NMR spectra of nigericin-Li+ and nigericin-Cs+ complexes show wide broadenings, suggesting strong cation interaction with the ionophore; in contrast, the complexes with Na+, K+, and Rb+ show only clear-cut chemical shifts. These latter results support the view that nigericin forms highly stable complexes with Li+ and Cs+ and contribute to the explanation for the inability of this ionophore to transport the former cations in conditions where it catalyzes a fast transport of K+>Rb+>Na+.Part of the results of this paper were presented at the 14th International Congress of Biochemistry in Prague, Czechoslovakia.  相似文献   

2.
The alkali-ion binding properties of two natural depsipeptide ion carriers, enniatin B (EnB) and valinomycin (VM), are examined and compared by the empirical force field method. While VM has been shown to bind preferentially K+, Rb+, and Cs+ over Na+ in most solvents, EnB is considerably less specific. We find that EnB forms two kinds of complexes, internal and external. In internal complexes, the ion binds to all six carbonyl oxygens, while in external ones, only three oxygens, preferentially those of the D-hydroxy-isovaleryl residues, are bound. The size of the internal cavity is best suited for Na+, while K+ and Rb+ squeeze in asymmetrically by distorting the molecule, and Cs+ not at all. External binding is much less specific. Since internal complexes possess much higher strain energies than external ones, the latter may be at least as stable as the former, even in fairly non-polar solvents. VM is calculated to bind only internally, and with much less strain energy than EnB. The size of its internal cavity is well suited for binding the ions K+, Rb+, and Cs+, but is too big for Na+. The difference between the binding energies of Na+ and K+ is much smaller than that between the corresponding hydration enthalpies, thus explaining the binding preference for the latter ion.  相似文献   

3.
Potassium channels allow the selective flux of K+ excluding the smaller, and more abundant in the extracellular solution, Na+ ions. Here we show that Shab is a typical K+ channel that excludes Na+ under bi-ionic, Nao/Ki or Nao/Rbi, conditions. However, when internal K+ is replaced by Cs+ (Nao/Csi), stable inward Na+ and outward Cs+ currents are observed. These currents show that Shab selectivity is not accounted for by protein structural elements alone, as implicit in the snug-fit model of selectivity. Additionally, here we report the block of Shab channels by external Ca2+ ions, and compare the effect that internal K+ replacement exerts on both Ca2+ and TEA block. Our observations indicate that Ca2+ blocks the channels at a site located near the external TEA binding site, and that this pore region changes conformation under conditions that allow Na+ permeation. In contrast, the latter ion conditions do not significantly affect the binding of quinidine to the pore central cavity. Based on our observations and the structural information derived from the NaK bacterial channel, we hypothesize that Ca2+ is probably coordinated by main chain carbonyls of the pore´s first K+-binding site.  相似文献   

4.
The wheat root high-affinity K+ transporter HKT1 functions as a sodium-coupled potassium co-uptake transporter. At toxic millimolar levels of sodium (Na+), HKT1 mediates low-affinity Na+ uptake while potassium (K+) uptake is blocked. In roots, low-affinity Na+ uptake and inhibition of K+ uptake contribute to Na+ toxicity. In the present study, the selectivity among alkali cations of HKT1 expressed in Xenopus oocytes and yeast was investigated under various ionic conditions at steady state. The data show that HKT1 is highly selective for uptake of the two physiologically significant alkali cations, K+ and Na+ over Rb+, Cs+ and Li+. In addition, Rb+ and Cs+, and an excess of extracellular K+ over Na+, are shown to partially reduce or block HKT1-mediated K+-Na+ uptake. Furthermore, K+, Rb+ and Cs+ also effectively reduce outward currents mediated by HKT1, thereby causing depolarizations. In yeast, HKT1 can produce high-affinity Rb+ uptake at approximately 15-fold lower rates than for K+. Rb+ influx in yeast can be mediated by the ability of the yeast plasma membrane proton pump to balance the 35-fold lower HKT1 conductance for Rb+. A model for HKT1 activity is presented involving a high-affinity K+ binding site and a high-affinity Na+ binding site, and competitive interactions of K+, Na+ and other alkali cations for binding to these two sites. Possible implications of the presented results for physiological K+ and Na+ uptake in plants are discussed.  相似文献   

5.
Two recessive mutations of Paramecium tetraurelia confer sensitivity to potassium: While wild-type cells survive when up to 30 mM KCI is added to their growth medium, mutants cease to grow and die when levels of added KCl reach 20–25 mM. Similar sensitivities are seen to Rb+ and Cs+, but not to Na+. Swimming behavior of mutants is indistinguishable from wild type when place in stimulating solutions containing Na+, K+, or Ba2+. Behavioral adaptation to low levels of K+ also is indistiguishable from wild type. Flame photometry reveals that one mutant is unable to keep out K+ when that ion is at high levels in the medium, while the other mutant readily leaks K+ and Na+ when those ions are at low levels in the medium. Both mutants have markedly lower internal Na+ than does wild type. Problem with K+ permeability account for the sensitivity of the one mutant to elevated external K+, but the basis of sensitivity in the other mutant is unclear. These mutants expand the range of ion regulation mutants in Paramecium and demonstrate that lesions in cellular ion regulation in this organism need not result in changes in swimming behavior.  相似文献   

6.
Internal Cs+, Na+, Li+, and, to a lesser degree, Rb+ interfere with outward current through the K pores in voltage clamped squid axons. Addition of 100 mM NaF to the perfusion medium cuts outward current for large depolarizations about in half, and causes negative conductance over a range of membrane voltages. For example, suddenly reducing membrane potential from +100 to +60 mv increases the magnitude of the outward current. Internal Cs+ and, to a small extent, Li+, also cause negative conductance. Na+ ions permeate at least 17 times less well through the K pores than K+, and Cs+ does not permeate measurably. The results strongly suggest that K pores have a wide and not very selective inner mouth, which accepts K+, Na+, Li+, Cs+, tetraethylammonium ion (TEA+), and other ions. The diameter of the mouth must be at least 8 A, which is the diameter of a TEA+ ion. K+ ions in the mouths probably have full hydration shells. The remainder of the pore is postulated to be 2.6–3.0 A in diameter, large enough for K+ and Rb+ but too small for Cs+ and TEA+. We postulate that Na+ ions do not enter the narrower part of the pore because they are too small to fit well in the coordination cages provided by the pore as replacements for the water molecules surrounding an ion.  相似文献   

7.
The ability of acid-sensing ion channels (ASICs) to discriminate among cations was assessed based on changes in conductance and reversal potential with ion substitution. Human ASIC1a was expressed in Xenopus laevis oocytes, and acid-induced currents were measured using two-electrode voltage clamp. Replacement of extracellular Na+ with Li+, K+, Rb+, or Cs+ altered inward conductance and shifted the reversal potentials consistent with a selectivity sequence of Li ∼ Na > K > Rb > Cs. Permeability decreased more rapidly than conductance as a function of atomic size, with PK/PNa = 0.1 and GK/GNa = 0.7 and PRb/PNa = 0.03 and GRb/GNa = 0.3. Stimulation of Cl currents when Na+ was replaced with Ca2+, Sr2+, or Ba2+ indicated a finite permeability to divalent cations. Inward conductance increased with extracellular Na+ in a hyperbolic manner, consistent with an apparent affinity (Km) for Na+ conduction of 25 mM. Nitrogen-containing cations, including NH4+, NH3OH+, and guanidinium, were also permeant. In addition to passing through the channels, guanidinium blocked Na+ currents, implying competition for a site within the pore. The role of negative charges in an external vestibule of the pore was evaluated using the point mutation D434N. The mutant channel had a decreased single-channel conductance, measured in excised outside-out patches, and a macroscopic slope conductance that increased with hyperpolarization. It had a weakened interaction with Na+ (Km = 72 mM) and a selectivity that was shifted toward larger atomic sizes. We conclude that the selectivity of ASIC1 is based at least in part on interactions with binding sites both within and internal to the outer vestibule.  相似文献   

8.
Acid-sensing ion channels (ASICs) are proton-gated cation-selective channels expressed in the peripheral and central nervous systems. The ion permeation pathway of ASIC1a is defined by residues 426–450 in the second transmembrane (TM2) segment. The gate, formed by the intersection of the TM2 segments, localizes near the extracellular boundary of the plasma membrane. We explored the contribution to ion permeation and selectivity of residues in the TM2 segment of ASIC1a. Studies of accessibility with positively charged methanethiosulfonate reagents suggest that the permeation pathway in the open state constricts below the gate, restricting the passage to large ions. Substitution of residues in the intracellular vestibule at positions 437, 438, 443, or 446 significantly increased the permeability to K+ versus Na+. ASIC1a shows a selectivity sequence for alkali metals of Na+>Li+>K+≫Rb+>Cs+. Alanine and cysteine substitutions at position 438 increased, to different extents, the relative permeability to Li+, K+, Rb+, and Cs+. For these mutants, ion permeation was not a function of the diameter of the nonhydrated ion, suggesting that Gly-438 encompasses an ion coordination site that is essential for ion selectivity. M437C and A443C mutants showed slightly increased permeability to K+, Rb+, and Cs+, suggesting that substitutions at these positions influence ion discrimination by altering molecular sieving. Our results indicate that ion selectivity is accomplished by the contribution of multiple sites in the pore of ASIC1a.  相似文献   

9.
Ion conduction in K+-channels is usually described in terms of concerted movements of K+ progressing in a single file through a narrow pore. Permeation is driven by an incoming ion knocking on those ions already inside the protein. A fine-tuned balance between high-affinity binding and electrostatic repulsive forces between permeant ions is needed to achieve efficient conduction. While K+-channels are known to be highly selective for K+ over Na+, some K+ channels conduct Na+ in the absence of K+. Other ions are known to permeate K+-channels with a more moderate preference and unusual conduction features. We describe an extensive computational study on ion conduction in K+-channels rendering free energy profiles for the translocation of three different alkali ions and some of their mixtures. The free energy maps for Rb+ translocation show at atomic level why experimental Rb+ conductance is slightly lower than that of K+. In contrast to K+ or Rb+, external Na+ block K+ currents, and the sites where Na+ transport is hindered are characterized. Translocation of K+/Na+ mixtures is energetically unfavorable owing to the absence of equally spaced ion-binding sites for Na+, excluding Na+ from a channel already loaded with K+.  相似文献   

10.
Summary 86Rb+ fluxes have been measured in suspensions of vesicles prepared from the epithelium of toad urinary bladder. A readily measurable barium-sensitive, ouabain-insensitive component has been identified; the concentration of external Ba2+ required for half-maximal inhibition was 0.6mm. The effects of externally added cations on86Rb+ influx and efflux have established that this pathway is conductive, with a selectivity for K+, Rb+ and Cs+ over Na+ and Li+. the Rb+ uptake is inversely dependent on external pH, but not significantly affected by internal Ca2+ or external amiloride, quinine, quinidine or lidocaine. It is likely, albeit not yet certain, that the conductive Rb+ pathway is incorporated in basolateral vesicles oriented right-side-out. It is also not yet clear whether this pathway comprises the principle basolateral K+ channel in vivo, and that its properties have been unchanged during the preparative procedures. Subject to these caveats, the data suggest that the inhibition by quinidine of Na+ transport across toad bladder does not arise primarily from membrane depolarization produced by a direct blockage of the basolateral channels. It now seems more likely that the quinidine-induced elevation of intracellular Ca2+ activity directly blocks apical Na+ entry.  相似文献   

11.
Summary The selectivity of the hemocyanin channel was measured for alkali metal ions and ammonium. Permeability ratios relative to K+ measured from biionic potentials were: NH 4 + (1.52)>Rb+ (1.05)>K+ (1.0)>Cs+ (0.89)>Na+ (0.81)>Li+ (0.35). Single-channel ion conductance was a saturating function of ion concentration regardless of the cation present in the bathing medium. Maximal conductances were 270, 267, 215, 176, 170 and 37 ps for K+, Rb+, NH 4 + , Cs+, Na+ and Li+, respectively. Current-voltage curves for the different monovalent cations were measured and described using a threebarrier model previously used to explain the voltage dependence of the instantaneous channel conductance (Cecchi, Alvarez & Latorre, 1981). In this way, binding and peak energies were estimated for the different ions. Considering the energy peaks as transition states between the ion and the channel, it is concluded that they follow Eisenman's selectivity sequences XI (cis peak, i.e., Li+>Na+>K+>Rb+>Cs+; highest field strength), VII (central peak) and II (trans peak). The cis side was that to which hemocyanin was added and was electrically ground. The binding energies, on the other hand, follow Eisenman's series XI for strong electric field sites. Binding of NH 4 + to the cis-well suggests that the orientation of the ligands in the site is tetrahedric.  相似文献   

12.
The influx of Na+, K+, Rb+, and Cs+ into frog sartorius muscle has been followed. The results show that a maximum rate is found for K+, while Na+ and Cs+ penetrate much more slowly. Similar measurements with Ca++, Ba++, and Ra++ show that Ba++ penetrates at a rate somewhat greater than that of either Ca++ or Ra++. All these divalent cations, however, penetrate at rates much slower than do the alkali cations. The results obtained are discussed with reference to a model that has been developed to explain the different penetration rates for the alkali cations.  相似文献   

13.
In their influence on the P.D. across the protoplasm of Valonia macrophysa, Kütz., Li+ and Cs+ resemble Na+, while Rb+ and NH4 + resemble K+. The apparent mobilities of the ions in the external surface layer of Valonia protoplasm increase in the order: Cs+, Na+, Li+ < Cl- < Rb+ < K+ < NH4 +.  相似文献   

14.
The charge-transporting activity of the Na+,K+-ATPase depends on its surrounding electric field. To isolate which steps of the enzyme’s reaction cycle involve charge movement, we have investigated the response of the voltage-sensitive fluorescent probe RH421 to interaction of the protein with BTEA (benzyltriethylammonium), which binds from the extracellular medium to the Na+,K+-ATPase’s transport sites in competition with Na+ and K+, but is not occluded within the protein. We find that only the occludable ions Na+, K+, Rb+, and Cs+ cause a drop in RH421 fluorescence. We conclude that RH421 detects intramembrane electric field strength changes arising from charge transport associated with conformational changes occluding the transported ions within the protein, not the electric fields of the bound ions themselves. This appears at first to conflict with electrophysiological studies suggesting extracellular Na+ or K+ binding in a high field access channel is a major electrogenic reaction of the Na+,K+-ATPase. All results can be explained consistently if ion occlusion involves local deformations in the lipid membrane surrounding the protein occurring simultaneously with conformational changes necessary for ion occlusion. The most likely origin of the RH421 fluorescence response is a change in membrane dipole potential caused by membrane deformation.  相似文献   

15.
The charge-transporting activity of the Na+,K+-ATPase depends on its surrounding electric field. To isolate which steps of the enzyme’s reaction cycle involve charge movement, we have investigated the response of the voltage-sensitive fluorescent probe RH421 to interaction of the protein with BTEA (benzyltriethylammonium), which binds from the extracellular medium to the Na+,K+-ATPase’s transport sites in competition with Na+ and K+, but is not occluded within the protein. We find that only the occludable ions Na+, K+, Rb+, and Cs+ cause a drop in RH421 fluorescence. We conclude that RH421 detects intramembrane electric field strength changes arising from charge transport associated with conformational changes occluding the transported ions within the protein, not the electric fields of the bound ions themselves. This appears at first to conflict with electrophysiological studies suggesting extracellular Na+ or K+ binding in a high field access channel is a major electrogenic reaction of the Na+,K+-ATPase. All results can be explained consistently if ion occlusion involves local deformations in the lipid membrane surrounding the protein occurring simultaneously with conformational changes necessary for ion occlusion. The most likely origin of the RH421 fluorescence response is a change in membrane dipole potential caused by membrane deformation.  相似文献   

16.
The influence of alkali ions on the circadian leaf movements of Oxalis regnellii Mig. was investigated. Ions were given to the oscillating system via the transpiration stream of cut stalks in nutrient medium. Chloride solutions of Rb+, Cs+, Na+ and K+ were tested and the results compared to previously published LiCl-results. The period of the circadian leaf movements was unaffected by a continual addition of Na+ or K+ to the nutrient medium (at least up to 40 mM). Rb+, in the concentration of 2.5 or 5 mM, caused a shortening of the period when applied continuously. Rb+ concentrations up to 60 mM were tested. Cs+ ions caused only lengthenings of the circadian period. Cs+ concentrations up to 40 mM were tested. Cs+ resembled Li+ in producing period lengthenings, but was not as effective as Li+ when compared on a concentration basis. Toxicity of the effective ions was in the following order: Li+Cs+Rb+, Rb+ pulses (50 mM, 4 h) phase-shifted the rhythm and caused advances. A phase response curve was determined and the maximum steady state advances were of the order of 1 h. The dual effect of the Rb+ ions is discussed and is assumed to be due to two counteracting processes, exemplified by Rb+-sensitive ATPase-controlled pumping processes and protein synthesis. For comparison, the effects of Rb+ and Li+ in human depressive disorders is also discussed in relation to their influence on circadian systems. It is emphasized that Rb+ and K+ behave differently and are not interchangeable in their action on circadian systems.  相似文献   

17.
Vesicular preparations of plasma membranes (PM) from the microalga Tetraselmis (Platymonas) viridisRouch were used to investigate the ion specificity of the Na+/H+antiporter and Na+-translocating ATPase, two Na+-transporting systems previously identified functionally by our studies of T. viridisPM. The Na+/H+antiporter and Na+-ATPase were shown to translocate, with similar efficiencies, Na+and Li+across the membrane, whereas other cations, such as K+, Rb+, and Cs+, were not transported by these systems. Transport of the latter cations across PM of T. viridisoccurred through the ion channels of PM, which were apparently selective for K+.  相似文献   

18.
Summary Human 5-HT3 receptors expressed in HEK 293 cells were studied using patch-clamp techniques. The permeability ratios of cations to Na+ were Li+, 1.16; K+, 1.04; Rb+, 1.11; Cs+ 1.11; NMDG+, 0.04; Ca2+, 0.49, and Mg2+, 0.37. The permeability sequence of the alkali metal cations was Li+ > Rb+ = Cs+ > K+ > Na+. Increased external concentrations of Ca2+ or Mg2+ decreased 5-HT-induced currents at all potentials tested in a voltage-independent manner. The single-channel conductance of human 5-HT3 receptors measured by fluctuation analysis of whole-cell currents was 790 ± 100fS. Differences in the basic properties of 5-HT3 receptors between species may explain interspecies differences in pharmacological properties.  相似文献   

19.
The TRK-HKT family of K+ transporters mediates K+ and Na+ uptake in fungi and plants. In this study, we have investigated the molecular mechanism involved in the movement of alkali cations through the TRK1 transporter of Saccharomyces cerevisiae. The model that best explains the activity of ScTRK1 is a cotransport of two K+ or Rb+, both of which bind the two binding sites of ScTRK1 with very high affinities in K+-starved cells. Na+ can be transported in the same way but it exhibits a much lower affinity for the second binding site. Therefore, only at critical concentration ratios between K+ and Na+, or Rb+ and Na+, the transporter takes up Na+ together with K+ or Rb+. Mutation analyses suggest that the two binding sites are located in the P fragment of the first MPM motif of the transporter, and that Gln90 is involved in these binding sites. ScTRK1 can be in two states, medium or high affinity, and we have found that Leu949 is involved in the oscillation of the transporter between these two states. ScTRK1 mediates active K+ uptake. This is not Na+-coupled and direct coupling of ScTRK1 to a source of chemical energy seems more probable than K+-H+ cotransport.  相似文献   

20.
Highly cholinergic synaptosomes from the optic lobes of Sepia officinalis retain their ability to concentrate K+ and extrude Na+ and to synthesise acetylcholien in vitro. Choline uptake is hemicholinium-3 and Na+ sensitive but is not obligatorily coupled to choline metabolism, or an energy supply as shown by the action of metabolic and ion pump inhibitors. The influx and efflux and/or steady-state distributions of choline in the presence of Na+, Li+, Rb+, Cs+ and mannitol were studied. The influx studies at different cis-choline concentrations revealed two systems for choline influx with different monovalent cation sensitivity and suggested a 1 : 1 interaction of choline with both mechanisms. Choline efflux was stimulated by trans-choline. Calculations of the internal/external concentration ratio expected if choline transport were coupled to the Na+ gradient gave a maximal value of about 102. A secondary active transport of choline, where Na+ is the driver solute provides an explanation for the cation sensitivity of the mechanism as well as for the method of coupling of choline transport to the varying demands of the nervous system for acetylcholine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号