首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The interaction of the cationic Gemini surfactant hexamethylene‐1,3‐bis (tetradecyldimethylammonium bromide) (14‐6‐14) with bovine serum albumin (BSA) has been investigated by fluorescence quenching spectra and three‐dimensional (3D) fluorescence spectra. The Stern–Volmer quenching constants KSV and the corresponding thermodynamic parameters ΔH, ΔG and ΔS have been estimated by the fluorescence quenching method. The results indicated that hydrophobic forces were the predominant intermolecular forces between BSA and the surfactant. Competitive experiments and the number of binding sites calculation show that 14‐6‐14 can be inserted in site‐II (in subdomain IIIA) of BSA. The effect of 14‐6‐14 on the conformation of BSA was evaluated by synchronous fluorescence spectroscopy and 3D fluorescence spectral methods. The results show that the conformation of BSA was changed dramatically in the presence of 14‐6‐14, by binding to the Trp and Try residues of BSA. The investigation provides interaction between BSA and 14‐6‐14 as a model for molecular design and industrial research. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
6-thioguanine (6-TG) is an antineoplastic, nucleobase guanine, purine analog drug belongs to thiopurine drug-family of antimetabolites. In the present study, we report an experimental approach towards interaction mechanism of 6-TG with human serum albumin (HSA) and examine the chemical stability of HSA in the presence of denaturants such as guanidine hydrochloride (GdnHCl) and urea. Interaction of 6-TG with HSA has been studied by various spectroscopic and spectropolarimeteric methods to investigate what short of binding occurs at physiological conditions. 6-TG binds in the hydrophobic cavity of subdomain IIA of HSA by static quenching mechanism which induces conformation alteration in the protein structure. That helpful for further study of denaturation process where change in secondary structures causes unfolding of protein that also responsible for severance of domain III from rest of the protein part. We have also performed molecular simulation and molecular docking study in the presence of denaturating agents to determine the binding property of 6-TG and the effect of denaturating agents on the structural activity of HSA. We had found that GdnHCl is more effective denaturating agent when compared to urea. Hence, this study provides straight evidence of the binding mechanism of 6-TG with HSA and the formation of intermediate or unfolding transition that causes unfolding of HSA.  相似文献   

3.
《Process Biochemistry》2014,49(4):623-630
Herein, we report the effect of N,N-bis(dodecyloxycarbonylmethyl)-N,N,N,N-tetramethyl-1,2-ethanediammonium dibromide (dodecyl betainate gemini or DBG) on the structure and function of bovine serum albumin (BSA) by using fluorescence, time resolved fluorescence, circular dichroism and dynamic light scattering techniques. The Stern–Volmer quenching constants KSV and the corresponding thermodynamic parameters viz ΔH, ΔG and ΔS have been estimated by the fluorescence quenching method. The results indicated that DBG binds spontaneously with BSA through hydrophobic interaction. Time resolved fluorescence data show that the quenching follows the static mechanism pathway. It can be seen from far-UV CD spectra that the α-helical network of BSA is disrupted and its content increases from 71% to 79% at lower concentrations which again decreases to 38% at higher concentration. DLS measurements suggested that hydrodynamic radius (Rh) decreases in the presence of 30 and 40 μM of DBG while it increases when the concentration of DBG was 70 and 100 μM. The molecular docking study indicated that DBG is embedded into subdomain IIA of BSA and binds with the R-914, R-195 and R-217 residues by hydrogen bonding and by hydrophobic interaction.  相似文献   

4.
The quantitative determination of nucleic acids is of great importance in fundamental research and clinical diagnosis. In this work, the interaction between DNA and cationic Gemini surfactant 12‐4‐12, which changes the conformation of DNA, was investigated by UV‐vis absorption, FT‐IR spectra and steady‐state fluorescence techniques. A hydrophobic pyrene probe was used to investigate the microenvironment change and calculate the critical micelle concentration (CMC) of Gemini surfactant 12‐4‐12 (0.69 mmol/L), which is close to the value obtained from the conductivity method (0.79 mmol/L). A new detection assay for DNA is proposed with Gemini surfactant 12‐4‐12, using the resonance light‐scattering (RLS) technique. The formation of DNA–12‐4‐12 complex resulted in enhanced RLS signals at 368 nm, which is proportional to DNA concentration in the range 0.304–5.32 mg/L, with a detection limit of 35 µg/L. Most coexisting substances do not interfere in the detection and four synthetic samples were analyzed satisfactorily. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
The fungicide dodine combines the cooperative denaturation properties of guanidine with the mM denaturation activity of SDS. It was previously tested only on two small model proteins. Here we show that it can be used as a chemical denaturant for phosphoglycerate kinase (PGK), a much larger two‐domain enzyme. In addition to its properties as a chemical denaturant, dodine facilitates thermal denaturation of PGK, and we show for the first time that it also facilitates pressure denaturation of a protein. Much higher quality circular dichroism and amide I′ infrared spectra of PGK can be obtained in dodine than in guanidine, opening the possibility for use of dodine as a denaturant when UV or IR detection is desirable. One caution is that dodine denaturation, like other detergent‐based denaturants, is less reversible than guanidine denaturation.  相似文献   

6.
The nature of the interaction between polyacrylalc ion and several divalent cations, such as Cu2+, Mn2+, Zn2+, Ba2+ and Mg2+, was investigated using Raman spectroscopy. A specific Raman band characteristic of a carboxyl group is shifted upon addition of Cu2+. Zn2+ and Mn2+ to partially neutralized poly(acrylic acid). On the other hand. no frequency shift of the specific Raman band is observed on addition of Mg2+ and Ba2+*, though the intensity of the specific Raman band decreases with concentration of MgCl2. It is concluded from these Raman data that the interaction between polyacrylatc ion and Cu2+. Zn2+ or Mn2+ includes a specific interaction with bond formation, whereas in the case of Mg2+ and Ba2+, the electrostatic interaction is dominant.  相似文献   

7.
Dudu Wu  Zhi Chen 《Luminescence》2015,30(8):1212-1218
The interaction between ginsenoside Rh2 (G‐Rh2) and calf thymus DNA (ctDNA) was investigated by spectroscopic methods including UV–vis absorption, fluorescence and circular dichroism (CD) spectroscopy, coupled with DNA melting techniques and viscosity measurements. Stern–Volmer plots at different temperatures proved that the quenching mechanism was a static quenching procedure. The thermodynamic parameters, enthalpy change (ΔH) and entropy change (ΔS) were calculated to be –22.83 KJ · mol–1and 15.11 J · mol–1 · K–1by van ’t Hoff equation, suggesting that hydrophobic force might play a major role in the binding of G‐Rh2 to ctDNA. Moreover, the fluorescence quenching study with potassium iodide as quencher indicated that the KSV (Stern–Volmer quenching constant) value for the bound G‐Rh2 with ctDNA was lower than the free G‐Rh2. The relative viscosity of ctDNA increased with the addition of G‐Rh2 and also the ctDNA melting temperature increased in the presence of G‐Rh2. Denatured DNA studies showed that quenching by single‐stranded DNA was less than that by double‐stranded DNA. The observed changes in CD spectra also demonstrated that the intensities of the positive and negative bands decreased with the addition of G‐Rh2. The experimental results suggest that G‐Rh2 molecules bind to ctDNA via an intercalative binding mode. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
In our present study, binding between an important anti renal cancer drug temsirolimus and human transferrin (hTF) was investigated employing spectroscopic and molecular docking approach. In the presence of temsirolimus, hyper chromaticity is observed in hTF in UV spectroscopy suggestive of complex formation between hTF and temsirolimus. Fluorescence spectroscopy revealed the occurrence of quenching in hTF in the presence of temsirolimus implying complex formation taking place between hTF and temsirolimus. Further, the mode of interaction between hTF and temsirolimus was revealed to be static by fluorescence quenching analysis at 3 different temperatures. Binding constant values obtained employing fluorescence spectroscopy depicts strong interaction between hTF and temsirolimus; temsirolimus binds to hTF at 298 K with a binding constant of .32 × 104 M?1 implying the strength of this interaction. The negative Gibbs free energy obtained through quenching experiments is evident of the fact that the binding is spontaneous. CD spectra of hTF also showed a downward shift in the presence of temsirolimus as compared with free hTF implying complex formation between hTF and temsirolimus. Molecular docking was performed with a view to find out which residues are key players in this interaction. The importance of our study stems from the fact it will provide an insight into binding pattern of commonly administered renal cancer drug with an important protein that plays a pivotal role in many physiological processes.  相似文献   

9.
The interaction between vincamine (VCM) and human serum albumin (HSA) has been studied using a fluorescence quenching technique in combination with UV/vis absorption spectroscopy, Fourier transform infrared (FT–IR) spectroscopy, circular dichroism (CD) spectroscopy and molecular modeling under conditions similar to human physiological conditions. VCM effectively quenched the intrinsic fluorescence of HSA via static quenching. The binding constants were calculated from the fluorescence data. Thermodynamic analysis by Van't Hoff equation revealed enthalpy change (ΔH) and entropy change (ΔS) were ?4.57 kJ/mol and 76.26 J/mol/K, respectively, which indicated that the binding process was spontaneous and the hydrophobic interaction was the predominant force. The distance r between the donor (HSA) and acceptor (VCM) was obtained according to the Förster's theory of non‐radiative energy transfer and found to be 4.41 nm. Metal ions, viz., Na+, K+, Li+, Ni2+, Ca2+, Zn2+ and Al3+ were found to influence binding of the drug to protein. The 3D fluorescence, FT–IR and CD spectral results revealed changes in the secondary structure of the protein upon interaction with VCM. Furthermore, molecular modeling indicated that VCM could bind to the subdomain IIA (site I) of HSA. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
The interactions of keyhole limpet hemocyanin (KLH) with chromium nitrate, potassium dichromate, and chromate were investigated using fluorescence, UV–vis absorption and circular dichroism (CD) spectroscopy under simulated physiological conditions. The experimental results showed that the different forms of chromium could quench the intrinsic fluorescence of KLH following a static quenching mechanism rather than by dynamic collision, which indicated that a Cr–KLH complex was formed. The Stern–Volmer quenching constants for the interaction indicated that the binding reaction of KLH with Cr(VI) was stronger the binding of KLH with Cr(III). The thermodynamic values for binding of Cr(VI) to KLH are ΔH > 0 and ΔS > 0. By contrast, the values for the interaction of Cr(III) with KLH are ΔH < 0 and ΔS < 0. The results of synchronous fluorescence, UV–vis absorption and CD spectroscopy showed that the α‐helical secondary structure and conformation of KLH were altered by different forms of chromium. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
The combination of several drugs is necessary, especially during long-term therapy. A competitive binding of the drugs can cause a decrease in the amount of drugs actually bound to the protein and increase the biologically active fraction of the drug. Here, the interaction between 4,4′-Diisothiocyano-2,2′-stilbenedisulfonic acid (DIDS) and 2,4-Dinitrophenol (DNP) with Hemoglobin (Hb) was investigated by different spectroscopic and molecular modeling techniques. Fluorescence analysis was used to estimate the effect of the DIDS and DNP on Hb as well as to define the binding properties of binary and ternary complexes. The distance r between donor and acceptor was obtained by the FRET and found to be 2.25 and 2.13 nm for DIDS and DNP in binary and 2.08 and 2.07 nm for (Hb–DNP) DIDS and (Hb–DIDS) DNP complexes in ternary systems, respectively. Time-resolved fluorescence spectroscopy confirmed static quenching for Hb in the presence of DIDS and DNP in both systems. Furthermore, an increase in ellipticity values of Hb upon interaction with DIDS and DNP showed secondary structural changes of protein that determine to disrupt of hydrogen bonds and electrostatic interactions. Our results showed that the Hb destabilize in the presence of DIDS and DNP. Molecular modeling of the possible binding sites of DIDS and DNP in binary and ternary systems in Hb confirmed the experimental results.  相似文献   

12.
The interaction between cannabinol (CBN) and herring‐sperm deoxyribonucleic acid was investigated by using acridine orange as a fluorescence probe in this work. UV‐Vis spectroscopy, fluorescence spectroscopy, and DNA melting techniques were used. The fluorescence of DNA acridine orange was quenched by CBN. The results indicated that CBN can bind to DNA. The binding constant for the CBN and herring‐sperm deoxyribonucleic acid was obtained at 3 temperatures, respectively. Results of molecular docking corroborated the experimental results obtained from spectroscopic investigations. The influence of ionic strength on the fluorescence properties was also investigated. The thermodynamic results indicated that hydrophobic interaction played a major role in the binding between CBN and DNA.  相似文献   

13.
The binding of ofloxacin (OFLX) to human serum albumin (HSA) was investigated by fluorescence and circular dichroism (CD) techniques. The binding parameters have been evaluated by a fluorescence quenching method. Competitive binding measurements were performed in the presence of warfarin and ibuprofen and suggest binding to the warfarin site I of HSA. The distance r between donor (HSA) and acceptor (OFLX) was estimated according to the Forster's theory of non‐radiatiative energy transfer. CD spectra revealed that the binding of OFLX to HSA induced conformational changes in HSA. Molecular docking was performed and shows that for the lowest energy complex OFLX is located in site I of HSA, which correlate to the competitive binding experiments. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
Therapeutic effects of saffron ingredients were studied in some diseases. The pharmacokinetics and pharmacodynamics of these ingredients were also studied, but their transport mechanism is not clearly known. Serum albumin has been known as the most important transporter of many drugs in the body that affects their disposition, transportation, and bioavailability. Here, we investigated the interaction of crocin (Cro) with HSA, for the first time, and compared with the crocetin (Crt)–HSA interaction. UV and fluorescence spectroscopy, circular dichroism (CD), and molecular docking was applied to investigate the possibility and mechanism of binding of HSA with these natural carotenoids. The gradually addition of Cro increased HSA absorbency at 278 nm, while Crt decreased it. Both of these changes induced HSA unfolding that was confirmed by the decreased α-helix content, as determined by the CD. Both carotenoids quenched HSA fluorescence emission, but with different mechanisms. The Stern–Volmer plots indicated a dynamic quenching of intrinsic emission of HSA due to Cro addition, while Crt quenching followed both static and dynamic quenching mechanisms. Docking results indicated binding of Cro/Crt in sub-domain IIA, Sudlow site I of HSA, which accompanied with the hydrogen bonding of Cro/Crt with Tyr138. The interaction of these ligands (Cro/Crt) caused HSA unfolding and affects the hydrophobic environment of Trp241, which result in the quenching of Trp fluorescence. The UV spectroscopy and fluorescence quenching data indicated the differences in the mechanisms of interaction of Cro/Crt with HSA, which is due to the differences in the structure and hydrophobicity of these ligands.  相似文献   

15.
Erythropoietin (Epo), a glycoprotein that regulates the formation of erythrocytes in mammals, was produced in cultured tobacco BY2 cells (Nicotiana tabacum L. cv. Bright Yellow 2) by introducing human Epo cDNA via Agrobacterium tumefaciens-mediated gene transfer. Epo was correctly processed and subsequently penetrated the plasma membrane of tobacco cells. However, it remained attached to the cell wall and was not released into the culture medium. Although Epo produced by tobacco cells was glycosylated with N-linked oligosaccharides, these carbohydrates were smaller than those of the recombinant Epo produced in mammalian cells. Epo produced in tobacco exhibited in vitro biological activities by inducing the differentiation and proliferation of erythroid cells. However, it had no in vivo biological activities. A lectin-binding assay indicated the lack of sialic acid residues in the N-linked oligosaccharides of Epo, suggesting that Epo was removed from the circulation before it reached erythropoietic tissues.  相似文献   

16.
The intermolecular interaction of fosinopril, an angiotensin converting enzyme inhibitor with bovine serum albumin (BSA), has been investigated in physiological buffer (pH 7.4) by multi‐spectroscopic methods and molecular docking technique. The results obtained from fluorescence and UV absorption spectroscopy revealed that the fluorescence quenching mechanism of BSA induced by fosinopril was mediated by the combined dynamic and static quenching, and the static quenching was dominant in this system. The binding constant, Kb, value was found to lie between 2.69 × 103 and 9.55 × 103 M?1 at experimental temperatures (293, 298, 303, and 308 K), implying the low or intermediate binding affinity between fosinopril and BSA. Competitive binding experiments with site markers (phenylbutazone and diazepam) suggested that fosinopril preferentially bound to the site I in sub‐domain IIA on BSA, as evidenced by molecular docking analysis. The negative sign for enthalpy change (ΔH0) and entropy change (ΔS0) indicated that van der Waals force and hydrogen bonds played important roles in the fosinopril‐BSA interaction, and 8‐anilino‐1‐naphthalenesulfonate binding assay experiments offered evidence of the involvements of hydrophobic interactions. Moreover, spectroscopic results (synchronous fluorescence, 3‐dimensional fluorescence, and Fourier transform infrared spectroscopy) indicated a slight conformational change in BSA upon fosinopril interaction.  相似文献   

17.
In the present study, the interaction of Pyrogallol (PG) with human serum albumin (HSA) was investigated by UV, fluorescence, Circular dichroism (CD), and molecular docking methods. The results of fluorescence experiments showed that the quenching of intrinsic fluorescence of HSA by PG was due to a static quenching. The calculated binding constants (K) for PG-HSA at different temperatures were in the order of 104?M ?1, and the corresponding numbers of binding sites, n were approximately equal to unity. The thermodynamic parameters, ΔH and ΔS were calculated to be negative, which indicated that the interaction of PG with HSA was driven mainly by van der Waals forces and hydrogen bonds. The negative value was obtained for ΔG showed that the reaction was spontaneous. In addition, the effect of PG on the secondary structure of HSA was analyzed by performing UV–vis, synchronous fluorescence, and CD experiments. The results indicated that PG induced conformational changes in the structure of HSA. According to Förster no-radiation energy transfer theory, the binding distance of HSA to PG was calculated to be 1.93?nm. The results of molecular docking calculations clarified the binding mode and the binding sites which were in good agreement with the results of experiments.

Communicated by Ramaswamy H. Sarma  相似文献   


18.
The interaction mechanism of lipopeptide antibiotic daptomycin and polyamidoamine (PAMAM) dendrimers was studied using fluorescence spectroscopy. The fluorescence changes observed are associated with daptomycin–dendrimer interactions. The binding isotherms were constructed by plotting the fluorescence difference at 460 nm from kynurenine (Kyn‐13) of daptomycin in the presence and absence of dendrimer. A one‐site and two‐site binding model were quantitatively generated to estimate binding capacity and affinity constants from the isotherms. The shape of the binding isotherm and the dependence of the estimated capacity constants on dendrimer sizes and solvent pH values provide meaningful insight into the mechanism of interactions. A one‐site binding model adequately describes the binding isotherm obtained under a variety of experimental conditions with dendrimers of various sizes in the optimal binding pH region 3.5 to 4.5. Comparing the pH‐dependent binding capacity with the ionization profiles of daptomycin and dendrimer, the ionized aspartic acid residue (Asp‐9) of daptomycin primarily interact with PAMAM cationic surface amine. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

19.
Three different sizes (15.9 ± 2.1 nm, 26.4 ± 3.2 nm and 39.8 ± 4.0 nm, respectively) of citrate‐coated silver nanoparticles (SNPs) have been synthesized and characterized. The interactions of the synthesized SNPs with human serum albumin (HSA) at physiological pH have been systematically studied by UV‐vis absorption spectroscopy, fluorescence spectroscopy, synchronous fluorescence spectroscopy, three‐dimensional fluorescence spectroscopy and circular dichroism (CD) spectroscopy. The results indicate that the SNPs can bind to HSA with high affinity and quench the intrinsic fluorescence of HSA. The binding constants and quenching rate constants were calculated. The apparent association constants (Kapp) values are 2.14 × 104 M–1 for 15.9 nm SNP, 1.65 × 104 M–1 for 26.4 nm SNP and 1.37 × 104 M–1 for 39.8 nm SNP, respectively. The values of binding constant obtained from the fluorescence quenching data match well with that determined from the absorption spectral changes. These results suggest that the smaller SNPs have stronger interactions to HSA than the larger ones at the same concentrations. Synchronous fluorescence, three‐dimensional fluorescence and CD spectroscopy studies show that the synthesized SNPs can induce slight conformational changes in HSA. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
Melanotransferrin (MTf) is a member of the transferrin (Tf) family of iron (Fe)-binding proteins that was first identified as a cell-surface marker of melanoma. Although MTf has a high-affinity Fe-binding site that is practically identical to that of serum Tf, the protein does not play an essential role in Fe homeostasis and its precise molecular function remains unclear. A Zn(II)-binding motif, distinct from the Fe-binding site, has been proposed in human MTf based on computer modelling studies. However, little is known concerning the interaction of its proposed binding site(s) with metals and the consequences in terms of MTf conformation. For the first time, biochemical and spectroscopic techniques have been used in this study to characterise metal ion-binding to recombinant MTf. Initially, the binding of Fe to MTf was examined using 6M urea gel electrophoresis. Although four different iron-loaded forms were observed with serum Tf, only two forms were found with MTf, the apo-form and the N-monoferric holo-protein, suggesting a single high-affinity site. The presence of a single Fe(III)-binding site was also supported by EPR results which indicated that the Fe(III)-binding characteristics of MTf were unique, but somewhat comparable to the N-lobes of human serum Tf and chicken ovo-Tf. Circular dichroism (CD) analysis indicated that, as for Tf, no changes in secondary structure could be observed upon Fe(III)-binding. The ability of MTf to bind Zn(II) was also investigated using CD which demonstrated that the single high-affinity Fe-binding site was distinct from a potential Zn(II)-binding site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号