首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A set of empirical parameters which allows the prediction of the proton NMR chemical shifts at 70 C of non-exchangeable heterobase and anomeric protons in oligoribonucleotides has been constructed. The set is based on the highly flexible nature of oligoribonucleotide single strands and the wide range of conformational states which can be populated at relatively high temperatures (70 C or greater). A pairwise subtractive procedure, using 129 ribonucleotide oligomers (all 16 dimers, all 64 trimers, 37 tetramers, and 12 pentamers), shows that significant contributions to the observed chemical shift of protons in a given nucleoside residue are made by first, second, and third neighbors on the 3' and the 5' sides. The majority of the neighbors cause shielding effects with the exception of some first neighbors on the 5' side of a given residue. The magnitude of the shielding effects is greatest for the purine heterobases and follows the order A greater than G greater than C greater than U, with first neighbors on the 3'side showing more pronounced effects than second neighbors and these in turn showing larger effects than third neighbors. Second neighbors on the 5' side showed consistently greater shieldings than first neighbors, a result attributed to the deshielding effects of the first 5' neighbor phosphate group. The parameter Tables are applied to the prediction of proton chemical shifts in one heptamer, four hexamers, and two pentamers and give average absolute differences between predicted and observed shifts less than 0.030 ppm. The parameter approach represents an excellent method of generating initial assignments of proton chemical shifts for any single strand oligoribonucleotide.  相似文献   

2.
The distant shielding effect in trinucleoside diphosphates   总被引:1,自引:0,他引:1  
L S Kan  J C Barrett  P O Ts'o 《Biopolymers》1973,12(10):2409-2421
A comparative study on the proton magnetic resonance of the dinucleoside monophosphates TpT, dApT, TpdA, the trinucleoside diphosphates dApTpT, TpTpdA, and poly T has been made. The purpose of this investigation was to establish whether in a trimer the proton chemical shifts of one terminal residue are influenced by the magnetic anistropy of the other terminal residue. The conformation of the trimers was first studied and shown to the similar to that of the corresponding dimer, except that of the percentage of the lefthanded conformers in the population of the trimers is probably lower than in the population of the dimers. The methylprotons, H-6, and H-1′ of the 3′-terminal T residue in TpTpdA (or the 5′-terminal T residue in dApTpT) are found to be more upfield than the same protons on the dimer TpT up to a magnitude of about 0.1 ppm. The shielding of these protons of the terminal T(s) in these trimers is even larger than those corresponding protons in the poly(T) at the same condition. From these results, it is concluded that a distant shielding effect is exerted by the 5′-terminal. A residue (or by the 3′-terminal A residue) on the other terminal residue in the trimers studied.  相似文献   

3.
The proton nmr spectra of the oligoribonucleotides in the series CpXpG, ApXpG, CpApXpUpG, and ApGpXpC (X = A, G, C, and U), together with the reference compounds CpG, ApG, CpApUpG, and ApGpC, have been measured. A complete analysis of all the nonexchangeable base protons and the ribose H-1′ protons was made. The insertion of a nucleotide X into a oligoribonucleotide led to shift changes at both nearest-neighbor and next-nearest-neighbor positions, which were rationalized in terms of the shielding abilities of the various bases. The derived shielding trends in the ApGpXpC series of compounds were successfully used to predict the chemical shifts of resonances in the related ApGpXpCpU series.  相似文献   

4.
Abstract

The magnetic shielding constant of the different 13C and 13H nuclei of a deoxyribose are calculated for the C2′ endo and C3′ endo puckerings of the furanose ring as a function of the conformation about the C4′C5′ bond. For the carbons the calculated variations are of several ppm, the C3′ endo puckering corresponding in most cases to a larger shielding than the C2′ endo one. For the protons the calculated variations of chemical shifts are all smaller than 1.3 ppm, that is of the order of magnitude of the variation of the geometrical shielding produced on these protons by the other units of a DNA double helix, with a change of the overall structure of the helix. The computations carried out on the deoxyribose ?3′ and 5′ phosphates for several conformations of the phosphate group tend to show that the changes of conformation of the charged group of atoms produce chemical shift variations smaller than the two conformational parameters of the deoxyribose itself. The calculations carried out for a ribose do give the general features of the differences between the carbon and proton spectra of deoxynucleosides and nucleosides.

The comparison of the measured and calculated phosphorylation shifts tend to show that the counterion contributes significantly, for some nuclei of the deoxyribose, to the shifts measured. The calculated magnitude of this polarization effect on carbon shifts suggests a tentative qualitative interpretation of carbon spectra of the ribose part of DNA double helices.  相似文献   

5.
The conformations of angiotensin II and the antagonist [Sar1, Ile8]angiotensin II in dimethylsulfoxide have been examined by high resolution proton magnetic resonance spectroscopy at 400MHz. The chemical shifts for the aromatic protons of the phenylalanine residue in angiotensin II are consistent with shielding and restricted rotation for this side-chain. The chemical shifts for the histidine C2 and C4 protons in angiotensin II also indicate shielding, whereas these same protons in the antagonist [Sar1, Ile8]angiotensin II do not demonstrate this shielding influence. These findings suggest a stacking interaction for the histidine and phenylalanine side-chains in angiotensin II which is important for activating angiotensin receptors.  相似文献   

6.
The variable-temperature proton nmr spectra of the oligoribonucleotides in the series CpApX and the series ApGpX, X = A, G, C, U, together with the parent dimers CpA and ApG have been measured. A complete analysis of all the nonexchangeable base proton resonances and ribose H-1′ proton resonances was made. The presence of trends in the shielding abilities of the various bases at both the nearest-neighbor and next-nearest-neighbor positions were identified. The observed shieldings could be used to predict the chemical shifts of protons in related systems. Based on the empirical results from ribodinucleoside monophosphates, the temperature-dependent behavior of the J1′2′ coupling constants of the triribonucleotides suggested that the compounds in the CpApX series stacked from the 5′-end to the 3′-end, while those in the ApGpX series stacked from the 3′-end to the 5′-end.  相似文献   

7.
The aim of this study was to attempt to determine the extent to which the chemical shifts of the nonexchangeable base protons of a DNA helix depend upon the base sequence. We measured the proton NMR spectra of twelve decadeoxynucleotides in order to carry out a "statistical" treatment. In the helices, the chemical shifts were found to be determined within +/- 0.04 ppm, largely by the nearest neighbor residues on the 5'-side, and to a smaller extent by the residue on the 3'-side. The theoretical chemical shift calculations reproduced very well the polymerization shifts measured for H2 protons of adenosines if the electrostatic field effect was taken into account. A fair agreement was also obtained for H8 protons of the adenosine and guanosine residues. However, theory underestimates the polarization effects of the base protons of cytidine. This discrepancy suggests that the conformation of this residue is different in the mononucleotides relative to double helices.  相似文献   

8.
The effects of chain length on the secondary structure of oligoadenylates   总被引:7,自引:0,他引:7  
The oligoadenylates (Ap)2–4A have been studied by proton magnetic resonance (pmr) spectroscopy. All the exterior base protons and a number of the interior base proton resonance have been assigned. The results of this work showed that the adenine bases in these oligoadenylates are intramolecularly stacked at 20°C with their bases oriented preferentially in the anti conformation about their respective glycosidic bonds. The oligomers were found to associate extensively even at concentrations of 0.02 M, primarily via “end-to-end” stacking. With increasing temperature, the oligomer bases destack, but it is argued that this unfolding process cannot be described in terms of a two-state stacked versus unstacked model. Instead, the temperature dependences of the base proton chemical shifts support a base-oscillation model. The relationship between this model and the two-state model is discussed. Finally, on the basis of the chain-length dependence of the proton chemical shifts of the various adenine bases, it was concluded that subtle variations in the secondary structure of these oligomers exist with increasing chain length. Evidence is presented to show that the effects of distant base shielding are considerably smaller than what was previously estimated. The observed departures from the “extended dimer” model are attributed to differences in the relative orientations of the bases with respect to their neighbors in the oligomer.  相似文献   

9.
Dinshaw J. Patel 《Biopolymers》1977,16(8):1635-1656
We have monitored the helix-coil transition of the self-complementary d-CpCpGpG and d-GpGpCpC sequences (20mM strand concentration) at the base pairs, sugar rings, and backbone phosphates by 360-MHz proton and 145.7-MHz phosphorus nmr spectroscopy in 0.1M phosphate solution between 5 and 95°C. The guanine 1-imino Watson-Crick hydrogen-bonded protons, characteristic of the duplex state, are observed below 10°C, with solvent exchange occurring by transient opening of the tetranucleotide duplexes. The cytosine 4-amino Watson-Crick hydrogen-bonded protons resonate 1.5 ppm downfield from the exposed protons at the same position in the tetranucleotide duplexes, with slow exchange indicative of restricted rotation about the C-N bond below 15°C. The guanine 2-amino exchangeable protons in the tetranucleotide sequence exhibit very broad resonances at low temperatures and narrow average resonances above 20°C, corresponding to intermediate and fast rotation about the C-N bond, respectively. Solvent exchange is slower at the amino protons compared to the imino protons since the latter broaden out above 10°C. The well-resolved nonexchangeable base proton chemical shifts exhibit helix-coil transition midpoints between 37 and 42°C. The transition midpoints and the temperature dependence of the chemical shifts at low temperatures were utilized to differentiate between resonances located at the terminal and internal base pairs while the H-5 and H-6 doublets of individual cytosines were related by spin decoupling studies. For each tetranucleotide duplex, the cytosine H-5 resonances exhibit the largest chemical shift change associated with the helix-coil transition, a result predicted from calculations based on nearest-neighbor atomic diamagnetic anisotropy and ring current contributions for a B-DNA duplex. There is reasonable agreement between experimental and calculated chemical shift changes for the helix-coil transition at the internal base pairs but the experimental shifts exceed the calculated values at the terminal base pairs due to end-to-end aggregation at low temperatures. Since the guanine H-8 resonances of the CpCpGpG and d-CpCpGpG sequences exhibit upfield shifts of 0.6–0.8 and <0.1 ppm, respectively, on duplex formation, these RNA and DNA tetranucleotides with the same sequence must adopt different base-pair overlap geometries. The large chemical shift changes associated with duplex formation at the sugar H-1′ triplets are not detected at the other sugar protons and emphasize the contribution of the attached base at the 1′ position. The coupling sum between the H-1′ and the H-2′ and H-2″ protons equals 15–17 Hz at all four sugar rings for the d-CpCpGpG and d-GpGpCpC duplexes (25°C), consistent with a C-3′ exo sugar ring pucker for the deoxytetranucleotides in solution. The temperature dependent phosphate chemical shifts monitor changes in the ω,ω′ angles about the O-P backbone bonds, in contrast to the base-pair proton chemical shifts, which monitor stacking interactions.  相似文献   

10.
The magnetic shielding constant of the different 13C and 1H nuclei of a deoxyribose are calculated for the C2' endo and C3' endo puckerings of the furanose ring as a function of the conformation about the C4'C5' bond. For the carbons the calculated variations are of several ppm, the C3' endo puckering corresponding in most cases to a larger shielding than the C2' endo one. For the protons the calculated variations of chemical shifts are all smaller than 1.3 ppm, that is of the order of magnitude of the variation of the geometrical shielding produced on these protons by the other units of a DNA double helix, with a change of the overall structure of the helix. The computations carried out on the deoxyribose-3' and 5' phosphates for several conformations of the phosphate group tend to show that the changes of conformation of the charged group of atoms produce chemical shift variations smaller than the two conformational parameters of the deoxyribose itself. The calculations carried out for a ribose do give the general features of the differences between the carbon and proton spectra of deoxynucleosides and nucleosides. The comparison of the measured and calculated phosphorylation shifts tend to show that the counterion contributes significantly, for some nuclei of the deoxyribose, to the shifts measured. The calculated magnitude of this polarization effect on carbon shifts suggests a tentative qualitative interpretation of carbon spectra of the ribose part of DNA double helices.  相似文献   

11.
Nucleotides, 5′-AMP, 5′-GMP, 5′-UMP, 5′-CMP and 5′-TMP, in D2O solution have been investigated by proton magnetic resonance spectroscopy. The concentration and the pD dependences of the proton chemical shifts of the nucleotides have been examined in detail. These results indicate that intermolecular association of vertical stacking of the base rings and intramolecular association between base protons and ionized phosphate group occur in solution. The effects of the temperature and lithium ion on 5′-AMP and 5′-UMP have been also investigated. The increase of temperature causes to reduce the intramolecular association for 5′-UMP and the both intra- and intermolecular association for 5′-AMP. Lithium ion reduces the intramolecular association for both 5′-AMP and 5′-UMP, and at the same time promotes the intermolecular one for the former. This can be interpreted by the ion-pair formation of lithium ion with the ionized phosphate group.  相似文献   

12.
The solution structure of native and systematically modified ovine submaxillary mucin (OSM) has been probed by proton NMR spectroscopic methods. Most of the resonances in the spectra have been tentatively assigned to the peptide and O-linked disaccharide, alpha-N-acetylneuraminic acid 2----6 alpha-N-acetylgalactosamine protons. On the basis of the observed chemical shifts, spectral resolution, and behavior of the exchangeable protons it is concluded the mucin possesses internal segmental flexibility and exists in solution as a random coil peptide. No long-lived interresidue peptide or carbohydrate hydrogen bonds were detected. The removal of (i) the C8 and C9 carbons of the sialic acid residue, (ii) the entire sialic acid residue, and (iii) the complete disaccharide side chain resulted in no significant changes in peptide core conformation. A limited set of proton spin coupling constants and nuclear Overhauser enhancements has been obtained for the threonine glycopeptide side chains in native and modified mucin. The results are consistent with the previously reported conformations for the (1----6) linkage in oligosaccharides and the threonyl glycosidic linkage in glycopeptides. The OSM disaccharide may exist as a extended linear structure with rotational freedom about the GalNAc C5-C6 bond, while the threonine glycosidic linkage appears to be sterically constrained, although multiple conformations about the threonine C beta-O gamma bond may be allowed. The small chemical shift perturbations detected in the glycosylated threonine methyl protons and the GalNAc carbons upon removal of the terminal sialic acid residue are consistent with this model.  相似文献   

13.
Various di- and tri-saccharides containing l-rhamnose were synthesized by condensation of 2,3,4-tri-O-acetyl- or 2,3,4-tri-O-benzoyl-α-l-rhamnopyranosyl bromide with an unblocked glycopyranoside. The determination of the anomeric configuration of l-rhamnose saccharides by n.m.r. is difficult because structure has a greater effect on the spectra than does configuration. The α and β configurations and the position of the substitution may be assigned from the chemical shifts of H-5 and CH3. In all the compounds having a β configuration, a shielding of the methyl group and a deshielding of the H-5 proton have been observed as compared to the compounds having an α configuration. The H-5 proton and the methyl group of peracetylated, (1→3)-linked α-l derivatives always resonate at higher fields than the corresponding protons of (1→6)-linked α-l derivatives.  相似文献   

14.
This paper shows that backbone amide proton titration shifts in polypeptide chains are a very sensitive manifestation of intramolecular hydrogen bonding between carboxylate groups and backbone amide protons. The population of specific hydrogen-bonded structures in the ensemble of species that constitutes the conformation of a flexible nonglobular linear peptide can be determined from the extent of the titration shifts. As an illustration, an investigation of the molecular conformation of the linear peptide H-Gly-Gly-L -Glu-L -Ala-OH is described. The proposed use of amide proton titration shifts for investigating polypeptide conformation is based on 360-MHz 1H-nmr studies of selected linear oligopeptides in H2O solutions. It was found that only a very limited number of amide protons in a polypeptide chain show sizable intrinsic intration shifts arising from through-bond interactions with ionizable groups. These are the amide proton of the C-terminal amino acid residue, the amide protons of Asp and the residues following Asp, and possibly the amide proton of the residue next to the N-terminus. Since the intrinsic titration shifts are upfield, the downfield titration shifts arising from conformation-dependent through-space interactions, in particular hydrogen bonding between the amide protons and carboxylate groups, can readily be identified.  相似文献   

15.
High-resolution proton nuclear magnetic resonance spectra of the trp repressor of Escherichia coli under various conditions are reported and analysed. The spectrum of the denatured state agrees with that predicted from the amino acid composition, with the exception of the two histidine residues, which have different chemical shifts although they titrate normally. The spectrum of the native protein shows the presence of extensive secondary and tertiary structure. Using information from chemical shifts, numbers of protons, titration behaviour, homonuclear chemical-shift-correlated spectroscopy and nuclear Overhauser enhancement correlated spectroscopy, most of the aromatic protons have been assigned to residue type. Further, about 30% of the aliphatic protons have been assigned to residue type by two-dimensional spectroscopy. Nuclear Overhauser enhancements establish that high-field methyl groups belonging to a valine residue lie directly over an aromatic ring.  相似文献   

16.
The 1H NMR chemical shifts, vicinal coupling constants, temperature coefficients, and exchange rates of the hydroxy protons of a Lewis b tetrasaccharide derivative, alpha-L-Fucp-(1 --> 2)-beta-D-Galp-(1 --> 3)[alpha-L-Fucp-(1 --> 4)]-beta-D-GlcpNAc-1-O(CH2)2NHCOCHCH2, have been measured in aqueous solution. The data did not show any evidence for persistent hydrogen bonds participating in the stabilization of the structure. While most of the hydroxy proton signals have chemical shifts similar to those of the corresponding methyl glycosides, four of them, O(3)H, O(4)H, and O(6)H of Galp, and O(2)H of the Fucp linked to GlcpNAc, exhibit large upfield shifts. This shielding effect has been attributed to the orientation of the hydroxy protons toward the amphiphilic region constituted by the hydroxy groups of the Galp residue and mainly the ring and methyl hydrogens of the Fucp unit attached to the GlcpNAc. The close face to face stacking interaction between the Fucp linked to the GlcpNAc and the Galp residues, as well as the steric interaction between the Fucp linked to the Galp and the GlcpNAc are confirmed by the additional inter-residue NOEs of the exchangeable protons in sugar units which are not directly connected.  相似文献   

17.
Empirical shielding surfaces are most commonly used to predict chemical shifts in proteins from known backbone torsion angles, phi and psi. However, the prediction of (15)N chemical shifts using this technique is significantly poorer, compared to that for the other nuclei such as (1)H(alpha), (13)C(alpha), and (13)C(beta). In this study, we investigated the effects from the preceding residue and the side-chain geometry, chi(1), on (15)N chemical shifts by statistical methods. For an amino acid sequence XY, the (15)N chemical shift of Y is expressed as a function of the amino acid types of X and Y, as well as the backbone torsion angles, phi and psi(i-1). Accordingly, 380 empirical 'Preceding Residue Specific Individual (PRSI)' (15)N chemical shift shielding surfaces, representing all the combinations of X and Y (except for Y=Pro), were built and used to predict (15)N chemical shift from phi and psi(i-1). We further investigated the chi(1) effects, which were found to account for differences in (15)N chemical shifts by approximately 5 ppm for amino acids Val, Ile, Thr, Phe, His, Tyr, and Trp. Taking the chi(1) effects into account, the chi(1)-calibrated PRSI shielding surfaces (XPRSI) were built and used to predict (15)N chemical shifts for these amino acids. We demonstrated that (15)N chemical shift predictions are significantly improved by incorporating the preceding residue and chi(1) effects. The present PRSI and XPRSI shielding surfaces were extensively compared with three recently published programs, SHIFTX (Neal et al., 2003), SHIFTS (Xu and Case, 2001 and 2002), and PROSHIFT (Meiler, 2003) on a set of ten randomly selected proteins. A set of Java programs using XPRSI shielding surfaces to predict (15)N chemical shifts in proteins were developed and are freely available for academic users at http://www.pronmr.com or by sending email to one of the authors Yunjun Wang (yunjunwang@yahoo.com).  相似文献   

18.
Complexation of the trypanocidal drug, ethidium bromide (EB), and the self-complementary deoxytetraribonucleoside triphosphates, 5′-d(ApCpGpT), 5′-d(ApGpCpT), and 5′-d(TpGpCpA), in aqueous salt solution has been investigated using one-dimensional and two-dimensional 500/600 MHz 1H-nmr spectroscopy. Six hundred megahertz two-dimensional homonuclear 1H-nmr spectroscopy (nuclear Overhauser effect spectroscopy) was used for a qualitative determination of the structures of EB binding with the deoxytetranucleotides. Concentration dependencies of proton chemical shifts of the molecules have been measured at constant temperatures (T = 303 or 308 K). Different successive schemes of complex formation between the dye molecule and the tetranucleotides have been examined by taking into account various molecular associations in solution, viz., 1:1, 1:2, 2:1 and 2:2 complexes. Equilibrium reaction constants and the limiting proton chemical shifts in the complexes have been determined. The relative contributions of different types of complexes in the equilibrium mixture have been determined and special features of the dynamic equilibrium have been revealed by analysis of chemical shifts as a function of both the dye and tetranucleotide concentrations. The present analysis leads to the conclusion that EB binds preferentially to the pyrimidine-purine sites of the tetranucleotide duplexes. The results show that the energy of EB binding depends on the base content in the pyrimidine-purine sites of the tetramers and on the nucleotide residuals flanking the preferential site. The most favorable structures of the 1:2 and 2:2 complexes of the dye with the tetranucleotides have been constructed using calculated values of induced chemical shifts of EB protons in conjunction with intermolecular nuclear Overhauser effects. The structures of the EB:tetranucleotide complexes depend on tetramer base sequence and are characterized by differences in helix parameters. © 1996 John Wiley & Sons, Inc.  相似文献   

19.
A four-dimensional 13C/13C-edited NOESY experiment is described which dramatically improves the resolution of protein NMR spectra and enables the straightforward assignment of nuclear Overhauser effects involving aliphatic and/or aromatic protons in larger proteins. The experiment is demonstrated for uniformly (greater than 95%) 13C-labeled interleukin 1 beta, a protein of 153 residues and 17.4 kDa, which plays a key role in the immune response. NOEs between aliphatic and/or aromatic protons are first spread out into a third dimension by the 13C chemical shift of the carbon atom attached to the originating proton and subsequently into a fourth dimension by the 13C chemical shift of the carbon atom attached to the destination proton. Thus, each NOE cross peak is labeled by four chemical shifts. By this means, ambiguities in the assignment of NOEs that arise from chemical shift overlap and degeneracy are completely removed. Further, NOEs between protons with the same chemical shifts can readily be detected providing their attached carbon atoms have different 13C chemical shifts. The design of the pulse sequence requires special care to minimize the level of artifacts arising from undesired coherence transfer pathways, and in particular those associated with "diagonal" peaks which correspond to magnetization that has not been transferred from one proton to another.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The aromatic region of the NMR spectrum of bovine pancreatic ribonuclease A was analyzed in order to clarify the nature of the microenvironments surrounding the individual histidine, tyrosine, and phenylalanine residues and the interactions with inhibitors. The NMR titration curves of ring protons of six tyrosine and three phenylalanine residues as well as four histidine residues were determined at 37 degrees C between pH 1.5 and pH 11.5 under various conditions. The titration curves were analyzed on the basis of a scheme of a simple proton dissociation sequence and the most probable values were obtained for the macroscopic pK values and intrinsic chemical shifts. The microenvironments surrounding the residues and the effects of inhibitors are discussed on the basis of these results. Based on the titration curves of ring protons, the six tyrosine residues were classified into the following four groups: (1) titratable and different chemical shifts for C(delta) and C(epsilon) protons (two tyrosine residues), (2) titratable but similar chemical shifts for C(delta) and C(epsilon) protons (two tyrosine residues), (3) not titratable and different chemical shifts for C(delta) and C(epsilon) protons (one tyrosine residues), and (4) not titratable and similar chemical shifts for C(delta) and C(epsilon) protons (one tyrosine residue). The resonance signals of ring protons were tentatively assigned to tyrosine and phenylalanine residues. The NMR titration curves of His-48 ring protons were continuous in solution containing 0.2 M sodium acetate but were discontinuous in solution containing 0.3 M NaCl because the NMR signals disappeared at pH values between 5 and 6.5. The effects of addition of formate, acetate, propionate, and ethanol were investigated in order to elucidate the mechanism of the continuity of the titration curves of His-48 in the presence of acetate ion. The NMR signal of His-48 C(2) protons was observed at pH 6 in the presence of acetate and propionate ions but was not observed in the presence of formate ion or ethanol. This indicated that both the alkyl chain and the anionic carboxylate group are necessary for the continuity of the titration curves of His-48 ring protons. Based on the results, the mechanism of the effects of acetate ion is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号