首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
I-TevI, a member of the GIY-YIG family of homing endonucleases, consists of an N-terminal catalytic domain and a C-terminal DNA-binding domain joined by a flexible linker. The GIY-YIG motif is in the N-terminal domain of I-TevI, which corresponds to a phylogenetically widespread catalytic cartridge that is often associated with mobile genetic elements. The crystal structure of the catalytic domain of I-TevI, the first of any GIY-YIG endonuclease, reveals a novel alpha/beta-fold with a central three-stranded antiparallel beta-sheet flanked by three helices. The most conserved and putative catalytic residues are located on a shallow, concave surface and include a metal coordination site. Similarities in the three-dimensional arrangement of the catalytically important residues and the cation-binding site with those of the His-Cys box endonuclease I-PpoI suggest the possibility of mechanistic relationships among these different families of homing endonucleases despite completely different folds.  相似文献   

2.
I-TevI is a member of the GIY-YIG family of homing endonucleases. It is folded into two structural and functional domains, an N-terminal catalytic domain and a C-terminal DNA-binding domain, separated by a flexible linker. In this study we have used genetic analyses, computational sequence analysis andNMR spectroscopy to define the configuration of theN-terminal domain and its relationship to the flexible linker. The catalytic domain is an alpha/beta structure contained within the first 92 amino acids of the 245-amino acid protein followed by an unstructured linker. Remarkably, this structured domain corresponds precisely to the GIY-YIG module defined by sequence comparisons of 57 proteins including more than 30 newly reported members of the family. Although much of the unstructured linker is not essential for activity, residues 93-116 are required, raising the possibility that this region may adopt an alternate conformation upon DNA binding. Two invariant residues of the GIY-YIG module, Arg27 and Glu75, located in alpha-helices, have properties of catalytic residues. Furthermore, the GIY-YIG sequence elements for which the module is named form part of a three-stranded antiparallel beta-sheet that is important for I-TevI structure and function.  相似文献   

3.
Using a recent version of the SICHO algorithm for in silico protein folding, we made a blind prediction of the tertiary structure of the N-terminal, independently folded, catalytic domain (CD) of the I-TevI homing endonuclease, a representative of the GIY-YIG superfamily of homing endonucleases. The secondary structure of the I-TevI CD has been determined using NMR spectroscopy, but computational sequence analysis failed to detect any protein of known tertiary structure related to the GIY-YIG nucleases (Kowalski et al., Nucleic Acids Res., 1999, 27, 2115-2125). To provide further insight into the structure-function relationships of all GIY-YIG superfamily members, including the recently described subfamily of type II restriction enzymes (Bujnicki et al., Trends Biochem. Sci., 2000, 26, 9-11), we incorporated the experimentally determined and predicted secondary and tertiary restraints in a reduced (side chain only) protein model, which was minimized by Monte Carlo dynamics and simulated annealing. The subsequently elaborated full atomic model of the I-TevI CD allows the available experimental data to be put into a structural context and suggests that the GIY-YIG domain may dimerize in order to bring together the conserved residues of the active site.  相似文献   

4.
5.
The GIY-YIG nuclease domain has been identified in homing endonucleases, DNA repair and recombination enzymes, and restriction endonucleases. The Type II restriction enzyme Eco29kI belongs to the GIY-YIG nuclease superfamily and, like most of other family members, including the homing endonuclease I-TevI, is a monomer. It recognizes the palindromic sequence 5′-CCGC/GG-3′ (“/” marks the cleavage position) and cuts it to generate 3′-staggered ends. The Eco29kI monomer, which contains a single active site, either has to nick sequentially individual DNA strands or has to form dimers or even higher-order oligomers upon DNA binding to make a double-strand break at its target site. Here, we provide experimental evidence that Eco29kI monomers dimerize on a single cognate DNA molecule forming the catalytically active complex. The mechanism described here for Eco29kI differs from that of Cfr42I isoschisomer, which also belongs to the GIY-YIG family but is functional as a tetramer. This novel mechanism may have implications for the function of homing endonucleases and other enzymes of the GIY-YIG family.  相似文献   

6.
Homing endonucleases are sequence-tolerant DNA endonucleases that act as mobile genetic elements. The ability of homing endonucleases to cleave substrates with multiple nucleotide substitutions suggests a high degree of adaptability in that changing or modulating cleavage preference would require relatively few amino acid substitutions. Here, using directed evolution experiments with the GIY-YIG homing endonuclease I-TevI that targets the thymidylate synthase gene of phage T4, we readily isolated variants that dramatically broadened I-TevI cleavage preference, as well as variants that fine-tuned cleavage preference. By combining substitutions, we observed an ∼10 000-fold improvement in cleavage on some substrates not cleaved by the wild-type enzyme, correlating with a decrease in readout of information content at the cleavage site. Strikingly, we were able to change the cleavage preference of I-TevI to that of the isoschizomer I-BmoI which targets a different cleavage site in the thymidylate synthase gene, recapitulating the evolution of cleavage preference in this family of homing endonucleases. Our results define a strategy to isolate GIY-YIG nuclease domains with distinct cleavage preferences, and provide insight into how homing endonucleases may escape a dead-end life cycle in a population of saturated target sites by promoting transposition to different target sites.  相似文献   

7.
Engineered nucleases are proteins that are able to cleave DNA at specified sites in the genome. These proteins have recently been used for gene targeting in a number of organisms. We showed earlier that zinc finger nucleases (ZFNs) can be used for generating gene-specific mutations in Bombyx mori by an error-prone DNA repair process of non-homologous end joining (NHEJ). Here we test the utility of another type of chimeric nuclease based on bacterial TAL effector proteins in order to induce targeted mutations in silkworm DNA. We designed three TAL effector nucleases (TALENs) against the genomic locus BmBLOS2, previously targeted by ZFNs. All three TALENs were able to induce mutations in silkworm germline cells suggesting a higher success rate of this type of chimeric enzyme. The efficiency of two of the tested TALENs was slightly higher than of the successful ZFN used previously. Simple design, high frequency of candidate targeting sites and comparable efficiency of induction of NHEJ mutations make TALENs an important alternative to ZFNs.  相似文献   

8.
9.
10.

Background

The majority of experimentally determined crystal structures of Type II restriction endonucleases (REases) exhibit a common PD-(D/E)XK fold. Crystal structures have been also determined for single representatives of two other folds: PLD (R.BfiI) and half-pipe (R.PabI), and bioinformatics analyses supported by mutagenesis suggested that some REases belong to the HNH fold. Our previous bioinformatic analysis suggested that REase R.Eco29kI shares sequence similarities with one more unrelated nuclease superfamily, GIY-YIG, however so far no experimental data were available to support this prediction. The determination of a crystal structure of the GIY-YIG domain of homing endonuclease I-TevI provided a template for modeling of R.Eco29kI and prompted us to validate the model experimentally.

Results

Using protein fold-recognition methods we generated a new alignment between R.Eco29kI and I-TevI, which suggested a reassignment of one of the putative catalytic residues. A theoretical model of R.Eco29kI was constructed to illustrate its predicted three-dimensional fold and organization of the active site, comprising amino acid residues Y49, Y76, R104, H108, E142, and N154. A series of mutants was constructed to generate amino acid substitutions of selected residues (Y49A, R104A, H108F, E142A and N154L) and the mutant proteins were examined for their ability to bind the DNA containing the Eco29kI site 5'-CCGCGG-3' and to catalyze the cleavage reaction. Experimental data reveal that residues Y49, R104, E142, H108, and N154 are important for the nuclease activity of R.Eco29kI, while H108 and N154 are also important for specific DNA binding by this enzyme.

Conclusion

Substitutions of residues Y49, R104, H108, E142 and N154 predicted by the model to be a part of the active site lead to mutant proteins with strong defects in the REase activity. These results are in very good agreement with the structural model presented in this work and with our prediction that R.Eco29kI belongs to the GIY-YIG superfamily of nucleases. Our study provides the first experimental evidence for a Type IIP REase that does not belong to the PD-(D/E)XK or HNH superfamilies of nucleases, and is instead a member of the unrelated GIY-YIG superfamily.  相似文献   

11.
沈延  肖安  黄鹏  王唯晔  朱作言  张博 《遗传》2013,35(4):395-409
  相似文献   

12.
Creating designed zinc-finger nucleases with minimal cytotoxicity   总被引:1,自引:0,他引:1  
Zinc-finger nucleases (ZFNs) have emerged as powerful tools for delivering a targeted genomic double-strand break (DSB) to either stimulate local homologous recombination with investigator-provided donor DNA or induce gene mutations at the site of cleavage in the absence of a donor by nonhomologous end joining both in plant cells and in mammalian cells, including human cells. ZFNs are formed by fusing zinc-finger proteins to the nonspecific cleavage domain of the FokI restriction enzyme. ZFN-mediated gene targeting yields high gene modification efficiencies (> 10%) in a variety of cells and cell types by delivering a recombinogenic DSB to the targeted chromosomal locus, using two designed ZFNs. The mechanism of DSB by ZFNs requires (1) two ZFN monomers to bind to their adjacent cognate sites on DNA and (2) the FokI nuclease domains to dimerize to form the active catalytic center for the induction of the DSB. In the case of ZFNs fused to wild-type FokI cleavage domains, homodimers may also form; this could limit the efficacy and safety of ZFNs by inducing off-target cleavage. In this article, we report further refinements to obligate heterodimer variants of the FokI cleavage domain for the creation of custom ZFNs with minimal cellular toxicity. The efficacy and efficiency of the reengineered obligate heterodimer variants of the FokI cleavage domain were tested using the green fluorescent protein gene targeting reporter system. The three-finger and four-finger zinc-finger protein fusions to the REL_DKK pair among the newly generated FokI nuclease domain variants appear to eliminate or greatly reduce the toxicity of designer ZFNs to human cells.  相似文献   

13.
14.
GIY-YIG homing endonucleases are modular enzymes consisting of a well-defined N-terminal catalytic domain connected to a variable C-terminal DNA-binding domain. Previous studies have revealed that the role of the DNA-binding domain is to recognize and bind intronless DNA substrate, positioning the N-terminal catalytic domain such that it is poised to generate a staggered double-strand break by an unknown mechanism. Interactions of the N-terminal catalytic domain with intronless substrate are therefore a critical step in the reaction pathway but have been difficult to define. Here, we have taken advantage of the reduced activity of I-BmoI, an isoschizomer of the well-studied bacteriophage T4 homing endonuclease I-TevI, to examine double-strand break formation by I-BmoI. We present evidence demonstrating that I-BmoI generates a double-strand break by two sequential but chemically independent nicking reactions where divalent metal ion is a limiting factor in top-strand nicking. We also show by in-gel footprinting that contacts by the I-BmoI catalytic domain induce significant minor groove DNA distortions that occur independently of bottom-strand nicking. Bottom-strand contacts are critical for accurate top-strand nicking, whereas top-strand contacts have little influence on the accuracy of bottom-strand nicking. We discuss our results in the context of current models of GIY-YIG endonuclease function, with emphasis on the role of divalent metal ion and strand-specific contacts in regulating the activity of a single active site to generate a staggered double-strand break.  相似文献   

15.
Homing endonucleases are site-specific DNA endonucleases that function as mobile genetic elements by introducing double-strand breaks or nicks at defined locations. Of the major families of homing endonucleases, the modular GIY-YIG endonucleases are least understood in terms of mechanism. The GIY-YIG homing endonuclease I-BmoI generates a double-strand break by sequential nicking reactions during which the single active site of the GIY-YIG nuclease domain must undergo a substantial reorganization. Here, we show that divalent metal ion plays a significant role in regulating the two independent nicking reactions by I-BmoI. Rate constant determination for each nicking reaction revealed that limiting divalent metal ion has a greater impact on the second strand than the first strand nicking reaction. We also show that substrate mutations within the I-BmoI cleavage site can modulate the first strand nicking reaction over a 314-fold range. Additionally, in-gel DNA footprinting with mutant substrates and modeling of an I-BmoI-substrate complex suggest that amino acid contacts to a critical GC-2 base pair are required to induce a bottom-strand distortion that likely directs conformational changes for reaction progress. Collectively, our data implies mechanistic roles for divalent metal ion and substrate bases, suggesting that divalent metal ion facilitates the re-positioning of the GIY-YIG nuclease domain between sequential nicking reactions.  相似文献   

16.
植物CRISPR/Cas9基因组编辑系统与突变分析   总被引:1,自引:0,他引:1  
马兴亮  刘耀光 《遗传》2016,38(2):118-125
  相似文献   

17.
The GIY-YIG nuclease domain is found within protein scaffolds that participate in diverse cellular pathways and contains a single active site that hydrolyzes DNA by a one-metal ion mechanism. GIY-YIG homing endonucleases (GIY-HEs) are two-domain proteins with N-terminal GIY-YIG nuclease domains connected to C-terminal DNA-binding and they are thought to function as monomers. Using I-BmoI as a model GIY-HE, we test mechanisms by which the single active site is used to generate a double-strand break. We show that I-BmoI is partially disordered in the absence of substrate, and that the GIY-YIG domain alone has weak affinity for DNA. Significantly, we show that I-BmoI functions as a monomer at all steps of the reaction pathway and does not transiently dimerize or use sequential transesterification reactions to cleave substrate. Our results are consistent with the I-BmoI DNA-binding domain acting as a molecular anchor to tether the GIY-YIG domain to substrate, permitting rotation of the GIY-YIG domain to sequentially nick each DNA strand. These data highlight the mechanistic differences between monomeric GIY-HEs and dimeric or tetrameric GIY-YIG restriction enzymes, and they have implications for the use of the GIY-YIG domain in genome-editing applications.  相似文献   

18.
19.
Phage T4 endonuclease II (EndoII), a GIY-YIG endonuclease lacking a carboxy-terminal DNA-binding domain, was subjected to site-directed mutagenesis to investigate roles of individual amino acids in substrate recognition, binding, and catalysis. The structure of EndoII was modeled on that of UvrC. We found catalytic roles for residues in the putative catalytic surface (G49, R57, E118, and N130) similar to those described for I-TevI and UvrC; in addition, these residues were found to be important for substrate recognition and binding. The conserved glycine (G49) and arginine (R57) were essential for normal sequence recognition. Our results are in agreement with a role for these residues in forming the DNA-binding surface and exposing the substrate scissile bond at the active site. The conserved asparagine (N130) and an adjacent proline (P127) likely contribute to positioning the catalytic domain correctly. Enzymes in the EndoII subfamily of GIY-YIG endonucleases share a strongly conserved middle region (MR, residues 72 to 93, likely helical and possibly substituting for heterologous helices in I-TevI and UvrC) and a less strongly conserved N-terminal region (residues 12 to 24). Most of the conserved residues in these two regions appeared to contribute to binding strength without affecting the mode of substrate binding at the catalytic surface. EndoII K76, part of a conserved NUMOD3 DNA-binding motif of homing endonucleases found to overlap the MR, affected both sequence recognition and catalysis, suggesting a more direct involvement in positioning the substrate. Our data thus suggest roles for the MR and residues conserved in GIY-YIG enzymes in recognizing and binding the substrate.  相似文献   

20.
The structure of I-HmuI, which represents the last family of homing endonucleases without a defining crystallographic structure, has been determined in complex with its DNA target. A series of diverse protein structural domains and motifs, contacting sequential stretches of nucleotide bases, are distributed along the DNA target. I-HmuI contains an N-terminal domain with a DNA-binding surface found in the I-PpoI homing endonuclease and an associated HNH/N active site found in the bacterial colicins, and a C-terminal DNA-binding domain previously observed in the I-TevI homing endonuclease. The combination and exchange of these features between protein families indicates that the genetic mobility associated with homing endonucleases extends to the level of independent structural domains. I-HmuI provides an unambiguous structural connection between the His-Cys box endonucleases and the bacterial colicins, supporting the hypothesis that these enzymes diverged from a common ancestral nuclease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号