首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
SYNOPSIS. Monolayer established cell line cultures of bovine kidney (Madin-Darby) and human intestine (Intestine 407), as well as embryonic bovine tracheal and embryonic spleen cell line cultures were inoculated with E. auburnensis sporozoites and observed for a maximum of 22 days. Mature 1st generation schizonts developed in the kidney, tracheal and spleen cells. In the intestine cells, trophozoites were seen in 3 of 4 experiments, but schizonts were not found. Sporozoites penetrated cells, beginning within a few minutes after inoculation. Penetration was usually accomplished within 10 seconds, and the body of the sporozoite underwent a slight constriction as it passed thru the host cell membrane. Some sporozoites left cells. Numerous intracellular sporozoites were observed in kidney, tracheal and spleen cultures. Crescent bodies were seen in the parasitophorous vacuole as early as 1 day after inoculation. At this time, the nuclei of most intracellular sporozoites had changed from vesicular to compact. Beginning 4 days after inoculation, enlarged sporozoites and parasites having a sporozoite shape, but with 2-5 nuclei, were frequently seen. These enlarged sporozoites and sporozoite-shaped schizonts evidently transformed into trophozoites and spheroidal schizonts by means of lateral outpocketings. Few trophozoites were seen. More immature schizonts developed in kidney cells than in the other cell types. The numbers of mature schizonts observed in kidney and tracheal cells were similar, but development occurred less consistently in the latter. Few immature and mature schizonts developed in spleen cells. Mature schizonts, first seen 9 days after inoculation, were considerably smaller than those reported from calves. Some motile merozoites were seen; evidently no development beyond these occurred. The nucleus and nucleolus of host cells were enlarged; this enlargement was not as pronounced as in infections in calves. Multiple host cell nuclei were frequently observed. Degenerative changes in the cultured cells and in the parasites usually occurred, beginning 9-17 days after inoculation; these were more pronounced in the spleen cells than in the others.  相似文献   

2.
SYNOPSIS. Cell lines or established cell lines of bovine, ovine or human origin and primary cells from whole embryos of groundsquirrels were used in a study of the in vitro development of Eimeria callospermophili and E. bilamellata from the Uinta ground squirrel, Spermophilus armatus. Monolayers in Leighton tube cultures were inoculated with sporozoites of either of these 2 species and examined with phase-contrast microscopy at various intervals. After such examination, coverslips were fixed in Schaudinn's or Zenker's fluid and variously stained. E. callospermophi sporozoites penetrated cells and underwent development to mature 1st generation schizonts in most cell types. At different times after inoculation, both species formed sporozoite-shaped schizonts, which later became spheroidal. Intracellular movements of sporo zoite-shaped schizonts of E. callospermophili were observed and such schizonts penetrated cells when freed by mechanical disintegration of the host cells. Merozoites were formed at the periphery of the schizont in both species. Mature 1st generation schizonts of E. callospermophili, with 6–14 merozoites, were first seen 15 hr after inoculation; the corresponding values for E. bilamellata were 12–27 merozoites and 4 days. Merozoites of both had anterior and posterior refractile bodies. Exposure to a trypsin-bile solution stimulated motility in merozoites of E. callospermophili. Second generation trophozoites and immature schizonts of E. callospermophili were seen in cultures of primary cells of whole ground-squirrel embryos 20–24 hr and 44–48 hr, respectively, after inoculation of sporozoites.  相似文献   

3.
SYNOPSIS. Sporozoites and 1st-, 2nd-, and 3rd-generation merozoites of Eimeria meleagrimitis were inoculated into primary cultures of turkey kidney cells. In vitro-excysted sporozoites developed into mature macrogamonts in 8 days; in vivo-excysted sporozoites developed into 2nd- or 3rd-generation schizonts within 5 to 7 days. First-generation merozoites obtained from infected turkeys produced mature 2nd-generation schizonts within 24 h. Second-generation merozoites from turkeys produced mature macrogamonts and oocysts within 72 h, whereas 3rd-generation merozoites produced these stages within 48 h. The oocysts that developed from 3rd-generation merozoites sporulated at 25 C and were infective for turkeys. The timing of the early stages and the intervals between schizogonic generations in cultures were comparable with those in turkeys. Morphologic parameters, however, indicated that some differences existed between in vitro and in vivo development. Second- and 3rd-generation schizonts and gamonts that developed after inoculation of cultures with merozoites were similar to stages in turkeys. Oocysts, however, were significantly smaller (P < 0.05) in cultures. All stages that developed after inoculation of cultures with sporozoites were smaller (P < 0.05) than their in vivo counter parts.  相似文献   

4.
SYNOPSIS. Monolayer cell line cultures of ovine trachea, thyroid, thymus, and kidney cells, as well as an established cell line (Madin-Darby) of bovine kidney cells, were inoculated with sporozoites of Eimeria ninakohlyakimovae and observed for a maximum of 24 days. Sporozoites were seen penetrating cells within 5 minutes after inoculation, as well as 2 and 3 days after inoculation, and leaving cells 3 days after inoculation. Transformation from sporozoites to trophozoites occurred by a widening or by a lateral outpocketing of the sporozoite body. Trophozoites and schizonts were first seen 3 days after inoculation in all ovine cell types. Large numbers of immature schizonts were observed, but only an estimated 0.4–4.3% of these became mature in the different kinds of cells. Usually, mature schizonts were first seen 10–11 days after inoculation in the ovine cells, but they sometimes occurred as early as 8 days. More mature schizonts were seen in the ovine kidney and trachea cells than in the others; the smallest number occurred in the bovine cells. The nucleoli of cells harboring large schizonts in each type of culture were enlarged and the chromatin clumps normally seen in the nuclei of non-infected cells were not visible. The cytoplasm of some infected cells was vacuolated. The formation of merozoites occurred by a budding process from blastophores, from the surface of schizonts, and/or from infoldings and invaginations of this surface. Merozoites were observed leaving host cells, but were not seen penetrating new cells. Intracellular first-generation merozoites were observed 13 and 15 days after inoculation in lamb trachea and kidney cells, respectively. No evidence of further development of such merozoites was found.  相似文献   

5.
SYNOPSIS. Monolayer primary cultures of cells from bovine embryonic intestine (BEInt), kidney (BEK), spleen (BES), and thyroid (BETy) and cell line cultures of embryonic bovine trachea (EBTr) and synovium (BESy) as well as established cell line cultures of bovine kidney (Madin-Darby, MDBK), human intestine (Int 407) and Syrian hamster kidney (BHK) were inoculated with freshly excysted sporozoites of Eimeria alabamensis and observed for 4–5 days. Sporozoites penetrated all cell types; during the 1st 24 hr, intracellular sporozoites, trophozoites and binucleate schizonts were seen in all cell cultures. Mature schizonts were more numerous in BES and MDBK cells than in the others. Large schizonts, 14.2 (11–18.5) by 10.2 μ (8.5–11), with 6–14 short, stubby merozoites (each with 2 refractile bodies) occurred at 2 and 3 days in all cells except BESy, Int 407, and BHK. Small schizonts, 9.7 (5.5–13) by 6 μ (5–8.5), with 6–10 long, slender merozoites (each with 2 refractile bodies) were found 3 days after inoculation in all cell types. At 4 days, some intracytoplasmic merozoites and a few intranuclear 2nd generation trophozoites were found. After 4 days post-inoculation, intracellular parasites were rarely seen and these were apparently degenerate. Development within the host cell nucleus, the normal site of development in the host animal, was observed infrequently in cell cultures. Intranuclear sporozoites, found no earlier than 2 days after inoculation, developed similarly to those in the cytoplasm, and small intranuclear schizonts with 6–10 merozoites (each with 2 refractile bodies) occurred after 3 days in culture.  相似文献   

6.
SYNOPSIS. Monolayer primary and secondary cultures of embryonic bovine kidney, spleen, intestinal and testicle cells, and secondary cultures of embryonic bovine thymus, maintained in lactalbumin hydrolysate, Earle's balanced salt solution and ovine serum were observed for a maximum of 21 days after inoculation of E. bovis sporozoites. The sporozoites entered the cells in all of these cultures but underwent development only in primary cultures of kidney and intestinal cells and in secondary cultures of kidney, spleen, thymus, intestinal, and testicle cells. In acellular media, the sporozoites retained motility no longer than 21 hr. In the cell cultures, free motile sporozoites were seen for as long as 18 days after inoculation. Sporozoites entered cells anterior end first; the process of penetration required a few seconds to about a minute. Sporozoites were also observed leaving host cells. Intracellular sporozoites were first seen 3 min after inoculation; they were observed at various intervals up to 18 days after inoculation. In transformation of sporozoites into trophozoites a marked change in size and appearance of the nucleus took place before the change in shape of the body occurred. Trophozoites were first found 7 days after inoculation, multinucleate schizonts after 8 days, and schizonts with merozoites after 14 days. Schizonts containing merozoites were seen only in kidney, spleen, and thymus cells. The mature schizonts were smaller and represented a much lower proportion of the total number than in comparable stages of infections in calves. Schizonts with many nuclei occurred in intestinal cells; the most advanced stage seen in testicle cells was the binucleate schizont. Nuclear and cytoplasmic changes were observed in the infected cells.  相似文献   

7.
SYNOPSIS. Cell lines of embryonic lamb trachea (LETr), lamb thyroid (LETh), and bovine liver (BEL) as well as an established cell line of Madin-Darby bovine kidney (MDBK) were used in a study of the in vitro development of Eimeria crandallis from sheep. Excysted sporozoites were inoculated into Leighton tubes containing coverslips with monolayers of the different cell types. Coverslips were examined with phase-contrast and interference-contrast at various intervals up to 20 days after inoculation; thereafter the monolayers were fixed and stained in various ways. Freshly excysted sporozoites, with 2–10 spheroidal refractile bodies, entered all of the cell types in relatively small numbers; intracellular sporozoites were first seen 2 min after inoculation. After 24 hr, most intracellular sporozoites had only 1 or 2 refractile bodies. Before and during transformation of sporozoites, the nucleus and peripheral nucleolus increased markedly in size. Transformation resulted in usually spheroid but sometimes ellipsoid trophozoites. Trophozoites were seen first 3–4 days, and binucleate schizonts at 4–5 days after inoculation. Immature schizonts increased considerably in size and eventually had large numbers of nuclei. Some of the parasites became lobulated and the lobules often separated to form individual schizonts. In BEL, LETr and LETh cells, mature schizonts, up to 150 μm in diameter, were seen first 11–14 days after inoculation. The BEL cells were the most favorable for development. Merozoites were formed by a budding process from the surface of the schizonts as well as from blastophores. Some merozoites were seen leaving mature schizonts, but no further development was observed. Merozoites frequently were motile and had a sharply bent posterior end. Marked nuclear and cytoplasmic changes were observed in parasitized cells.  相似文献   

8.
SYNOPSIS. In vitro development of Eimeria canadensis from cattle was studied in monolayer cultures of various bovine cell lines grown on coverslips in Leighton tubes. Excysted sporozoites were used for inoculation of the cell cultures. Sporozoites entered the host cells within a few minutes, but apart from a reduction in the number of refractile bodies, changed little in appearance during the first 9 days. Beginning at 91/2 days postinoculation, sporozoites developed into sporozoite-shaped schizonts or, less frequently, transformed into trophozoites. Sporozoite-shaped schizonts with as many as 8 nuclei were observed transforming into spheroid schizonts. At 111/2 days, intermediate schizonts had a characteristic single mass of refractile granules and 60–80 nuclei. Deep invaginations, which resulted in the formation of several blastophores, usually occurred when schizonts had about 100 nuclei. Merozoites were formed as a result of radial outgrowth from the surface of spheroid schizonts as well as of blastophores. Mature merozoites were seen 1st after 13 days.  相似文献   

9.
SYNOPSIS The development of Leucocytozoon dubreuili and L. fringillinarum was studied on successive days in simuliid and avian hosts. Sporogony of both parasites is completed in at least 5 species of sylvatic Simuliidae in a minimum of 4-5 days at 21 C. The pattern of development of the 2 species is similar but the size of the oocysts and the number of sporozoites differ. Sporozoites of L. dubreuili and L. fringillinarum were injected into uninfected robins (Turdus m. migratorius) and grackles (Quiscalus quiscula versicolor), respectively. Hepatic biopsies were performed on some of the injected birds. These and others were killed at intervals following inoculation and their tissues examined to detect stages of schizogony. Blood and macerated tissues from birds injected with sporozoites were transferred to uninfected birds to determine whether asexual stages would develop in the latter as a result of the inoculations. The 1st asexual cycle of L. dubreuili is completed in hepatic parenchymal cells in a minimum of 84 hr. Merozoites produced by the hepatic schizonts apparently follow one of 3 courses: invade hepatic parenchymal cells to initiate another cycle; penetrate blood cells and become gametocytes; penetrate tubular cells of the kidneys and grow into renal schizonts. The minimum prepatent period in infections with L. fringillinarum is 76 hr. The 1st asexual cycle occurs in hepatic parenchymal cells and in tubular cells of the kidney. A schizogonic cycle is completed in a minimum of 72 hr in the former and 96 hr in the kidney. Merozoites from the primary hepatic schizonts apparently give rise to (a) gametocytes; (b) secondary hepatic schizonts; (c) renal schizonts. Thus the schizogonic cycles of L. dubreuili and L. fringillinarum differ from each other and from those of L. simondi in ducks.  相似文献   

10.
SYNOPSIS. Monolayer cell cultures of embryonic turkey intestine (primary) and bovine kidney (cell line, 20th passage), maintained at 40.6 and 43 C for alternating intervals of approximately 12 hours in Basal Medium Eagle and fetal calf serum at pH 7.0–7.4, were observed for 144 hours after inoculation of Eimeria meleagrimitis sporozoites.
In turkey intestine cultures, which consisted of fibroblast-like cells and patches of epitheliul-like cells, there were decreases of 80 and 81% in the numbers of parasites between 5 and 48 hrs; in bovine cultures, 21–41% decreases. Decreases in the turkey cultures, however, were due to the nonsurvival of sporozoites in fibroblast-like cells; in epitheliul-like cells there was a 42% dcrease between 5 and 48 hrs and only 27% between 48 and 144 hours.
Trophozoites were present in bovine cells at 5 hrs. Small, mature schizonts containing only 12-28 merozoites were present in the bovine cultures and in the epitheliul-like cells within turkey intestine cultures from 48-144 hrs. Larger schizonts (50-115 by 20-70 μ) were present in bovine but not in turkey cultures from 72–144 hrs. Many of these schizonts contained far more merozoites than schizonts of any of the 3 generations described from the host.
In bovine cultures, there was an abundance of liberated merozoites at 50, 52, 74, and 76 hrs; many had reinvaded cells, sometimes as many as 50–60 per cell. In turkey cultures, liberated merozoites were found once at 144 hrs and none were intracellular. At 120 and 144 hrs in bovine cultures, abnormally developed and degenerate forms appeared; in turkey cultures, all were normal.  相似文献   

11.
Sporozoites and 1st-, 2nd-, and 3rd-generation merozoites of Eimeria meleagrimitis were inoculated into primary cultures of turkey kidney cells. In vitro-excysted sporozoites developed into mature macrogamonts in 8 days; in vivo-excysted sporozoites developed into 2nd- or 3rd-generation schizonts within 5 to 7 days. First-generation merozoites obtained from infected turkeys produced mature 2nd-generation schizonts within 24 h. Second-generation merozoites from turkeys produced mature macrogamonts and oocysts within 72 h, whereas 3rd-generation merozoites produced these stages within 48 h. The oocysts that developed from 3rd-generation merozoites sporulated at 25 C and were infective for turkeys. The timing of the early stages and the intervals between schizogonic generations in cultures were comparable with those in turkeys. Morphologic parameters, however, indicated that some differences existed between in vitro and in vivo development. Second- and 3rd-generation schizonts and gamonts that developed after inoculation of cultures with merozoites were similar to stages in turkeys. Oocysts, however, were significantly smaller (P less than 0.05) in cultures. All stages that developed after inoculation of cultures with sporozoites were smaller (P less than 0.05) than their in vivo counter parts.  相似文献   

12.
ABSTRACT. The effect of conditioned media (media aspirated from a variety of cell cultures after 4 d of growth) on cellular invasion by sporozoites of the turkey coccidium, Eimeria adenoeides, was examined. Conditioned medium from turkey kidney cells and baby hamster kidney cells failed to alter invasion. However, conditioned medium from turkey cecal cell cultures produced a significant (P ≤ 0.05), two-fold increase in invasion over control medium in a variety of cell types. Retentates of conditioned medium from the turkey cecal cells that were passed through microconcentrators having molecular mass cutoffs of 50, 100, and 300 kDa similarly enhanced invasion over retentates from control medium. However, retentates from microconcentrators with a cutoff of 1,000 kDa failed to enhance invasion. Pretreatment in conditioned medium, followed by washing of sporozoites prior to inoculation into cultures, did not result in enhanced invasion. Moreover, when the interval between inoculation of sporozoites into cells and fixation of cultures was reduced to less than 3 h, no enhancement of invasion occurred. Conditioned medium from turkey cecal cells that were grown in the presence of 35S-translabel had at least two labeled bands at 150 kDa and > 200 kDa that were absent in conditioned media from turkey kidney and baby hamster kidney cells.  相似文献   

13.
To establish an in vitro culture system for the precystic phase of Sarcocystis singaporensis, we initially tested various excysting fluids for sporocysts. An excysting fluid containing 2.5% bovine taurocholate and 10% bile of the specific intermediate host, Rattus norvegicus, in RPMI medium was the most suitable resulting in excystation of 80% of the sporozoites. Subsequently, we identified brain endothelial cells and pneumonocytes of the rat to promote growth of sporozoites to schizonts. Hepatoma, fibroblastic, or myoblastic cells were not suitable for the parasite's development. First-generation schizonts were seen at days 3-10 postinoculation (PI); a distinct second peak of schizogonic development only occurred in endothelial cells at days 14-18 PI. First-generation schizonts were 26.0 (± 3.8) μm in diameter and contained 32-50 merozoites, second-generation schizonts measured 34.4 (± 10.6) μm and contained 54-72 merozoites. Merozoite yield at large-scale culture conditions (75 cm2 flasks) using pneumonocytes as host cells was relatively low. Ultrastructurally, sporozoites and merozoites were quite similar to corresponding stages of other Sarcocystis species. With regard to host cell specificity and developmental kinetics, in vitro cultivation showed close similarities to the situation in vivo.  相似文献   

14.
Eimeria tenella completed its endogenous life cycle in primary cultures of kidney cells from 2- to 3-week-old-chickens, guinea fowl, partridges, pheasants, quail, and turkeys. Similarity in percentage of infection at 4 hr suggested that sporozoites entered cells from all birds in equal numbers. Development was better, however, in chicken cells in that the percentage of survival and of developmental stages during the first 2 days were greater, developmental stages occurring after 2 days usually were found earlier, mature 2nd-generation schizonts and oocysts were larger, and oocyst production was far greater than in nonhost cells. Multinucleate macrogametes, which sometimes reached sizes 3–4 times greater than normal oocysts, are reported for the first time.  相似文献   

15.
The lungs of a grey squirrel infected with Hepatozoon griseisciuri contained, in addition to typical haemogregarine schizonts, small cysts, each of which contained a single cystozoite. The presence of these cysts, which resemble those recorded in Hepatozoon species in reptiles, suggests that they may be a common feature in all Hepatozoon species and that these parasites may be transmitted by predation as well as by ingestion of infected arthropod vectors.  相似文献   

16.
SYNOPSIS To fill in some of the gaps in our knowledge of Schizogony of Haemoproteus columbae Kruse, transmission experiments involving inoculation into pigeons (Columba livia Gmelin) of sporozoites from salivary glands of the hippoboscid fly Pseudolynchia canariensis (Macquart) were carried out. We were unable to detect prepatent schizonts or to observe schizogonic development when infection became chronic. Schizonts were mainly confined to lung tissue. Observations of parapatent schizonts were made in smears and tissue sections. A variety of forms was found. Cytomeres were rarely encountered. Two types of morphologically distinct merozoites were seen. One type was twice as large as the other and was thought to repeat the process of schizogony several times before invading erythrocytes. Schizonts with cytoplasmic clefts were not common in our material due to the fixatives used (Bouin's and Carnoy's). Merozoites were occasionally observed inside monocytes, probably being phagocytosed.  相似文献   

17.
A field isolate of Eimeria tenella (FS139) was propagated several times in chickens medicated with 200 ppm of dietary monensin. In a laboratory test with 2-wk-old-chickens, the strain was resistant to monensin, salinomycin, and lasalocid given at double use level and was resistant to narasin and maduramicin at the normal use level. In comparison, a laboratory strain (WIS) was controlled by the normal use level of each product. When free WIS sporozoites were treated in vitro with 1.0 microgram/ml of monensin for 0.5 or 4.0 hr at 41 C and inoculated into primary cultures of chicken kidney cells the invasion was reduced by 35.6% or 96.3%, but invasion of FS139 sporozoites was increased by 18.5% by 0.5 hr treatment and was about the same as controls after 2 hr of treatment. Few sporozoites from the WIS strain developed into schizonts, but numerous sporozoites from the FS139 strain developed into normal first and second generation schizonts. The structure of free WIS sporozoites was distorted after 3 hr of treatment with 2.5 micrograms/ml of monensin at 41 C, as observed by light and scanning electron microscopy, whereas there was no change in structure of most treated FS139 sporozoites.  相似文献   

18.
Autoradiographic methods were used to study the incorporation of tritiated cytidine, thymidine, and uridine into asexual stages of Eimeria tenella cultured in embryonic chick kidney cells. Developing parasites did not incorporate 3H-thymidine either when host cells were labeled prior to infection or when the cultures were labeled for 30 min, 48–72 hr after infection. Continuous exposure of infected cultures to 3H-thymidine for up to 18 hr resulted in light labeling of cell cytoplasm and schizonts. 3H-cytidine and 3H-uridine were incorporated into parasites developing in cultures that were labeled before infection. When the cultures were labeled for 30 min, 48–72 hr postinfection and fixed immediately, schizonts were labeled lightly with 3H-cytidine but contained dense accumulations of 3H-uridine.  相似文献   

19.
Primary turkey kidney cells and Eimeria meleagrimitis sporozoites were treated with cationized ferritin (CF) or neuraminidase (NANase), and the effects on the invasion of the cells by the sporozoites were measured. Cultures of host cells pretreated with either compound contained significantly fewer intracellular sporozoites than did control cultures. There was little additive effect if cultures were first treated with NANase and then with CF. In contrast, pretreatment of sporozoites with CF or low concentrations of NANase had no effect on invasion. The inhibition of invasion was apparently due to an interaction between treatment substances and host cell surface rather than to direct effect on the sporozoites. The CF bound to the randomly distributed anionic sites on the surfaces of both host cells and sporozoites and then rapidly aggregated. Sporozoites, probably in the process of invading cells, were invariably found with the conoid in close association with aggregates of CF on the host cell membrane. The CF on the sporozoites was apparently shed before or during invasion because all intracellular sporozoites were completely devoid of the label.  相似文献   

20.
SYNOPSIS. A pure strain of Isospora felis derived from a single oocyst was used to study the endogenous cycle. One and a half to two-month-old laboratory-reared, coccidia-free kittens were used thruout the study. The endogenous stages occurred in the epithelial cells of the distal parts of the villi in the ileum and occasionally duodenum and jejunum. All stages lay above the host cell nucleus. There were 3 asexual generations. The 1st generation schizonts were 11–30 by 10–23 μ when mature and contained 16–17 banana-shaped merozoites 11–15 by 3–5 μ. They became mature in 96 or sometimes in 120 hours. The 1st generation merozoites entered new host cells, rounded up and formed 2nd generation schizonts. These formed within themselves 2–10 or more spindle-shaped bodies resembling 1st generation merozoites in shape and size. These were 2nd generation merozoites. They were uninucleate 120 hours after inoculation, but by 144 hours they became larger, multinucleate and some lost their elongate shape and became ovoid. They were then 3rd generation schizonts. They were 12–16 by 4–5 μ. Each formed up to 6 or more banana-shaped merozoites 6–8 by 1–2 μ. The 3rd generation schizonts and merozoites developed within the same host cell and parasitophorous vacuole as the 2nd generation schizonts and merozoites. Mature schizonts containing only 3rd generation merozoites appeared 144 hours after inoculation, were most abundant 168 hours after inoculation, and might be present as late as 216 hours after inoculation. They were 14–36 by 13–22 μ and contained 36 to more than 70 merozoites. The 3rd generation merozoites entered the sexual cycle. The mature microgametocytes were 24–72 by 18–32 μ and contained a central residuum and a large number of microgametes 5–7 by 0.8 μ with 2 posteriorly-directed flagella. The mature macrogametes were 16–22 by 8–13 μ. Gametogony occurred 144–216 hours after inoculation. The prepatent period was 168–192 hours and the patent period 10–11 days. Peak oocyst production occurred on the 6th day of the patent period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号