首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human fatty acid synthase (hFASN), a homo dimeric lipogenic enzyme with seven catalytic domains, is an important clinical target in cancer, metabolic syndrome and infections. Here, molecular modelling and docking methods were implemented to examine the inter-molecular interactions of thioesterase (TE) domain in hFASN with its physiological substrate, and to identify potential chemical inhibitors. TE catalyses the hydrolysis of thioester bond between palmitate and the 4’ phosphopantetheine of acyl carrier protein, releasing 16-carbon palmitate. The crystal structure of hFASN TE in two inhibitory conformations (A and B) were geometry-optimized and used for molecular docking with palmitate, orlistat (a known FASN inhibitor) and virtual screening against compounds from National Cancer Institute (NCI) database. Relatively, low binding affinity was observed during the complex formation of palmitate with A (?.164 kcal/mol) and B (?.332 kcal/mol) forms of TE, when compared with orlistat-docked TE (A form: ?5.872 kcal/mol and B form: ?5.484 kcal/mol), clearly indicating that the native inhibited conformation (crystal structure) was unfavourable for substrate binding. We used these orlistat dual binding modes as positive controls for prioritizing the ligands during virtual screening. From 2, 31,617 molecules in the NCI database, 916 high-scoring compounds (hit ligands) were obtained for A-form and 4582 for B-form of the TE-domain, which were then ranked according to glide docking score, XP H bond score, absorption, distribution, metabolism and excretion and binding free energy (Prime/MM-GBSA). Consequently, two top scoring ligands (NSC: 319661 and NSC: 153166) emerged as promising drug candidates that may be tested in FASN-over-expressing diseases.  相似文献   

2.
Cheng F  Wang Q  Chen M  Quiocho FA  Ma J 《Proteins》2008,70(4):1228-1234
Human fatty acid synthase (hFAS) thioesterase domain (TE) is an attractive drug target to treat obesity and cancer. On the basis of the recently published crystal structure of TE domain of hFAS, we performed molecular surface analysis and docking study to characterize the molecular interactions between the enzyme and its various ligands. Surface analysis identified the ligand-binding pocket of TE domain that encompasses the catalytic triad of Ser2308, His2481, Asp2338. Docking of palmitate, the main biological product of hFAS, into this pocket revealed the ligand-binding mode, in which the hydrophobic interactions are the dominant driving forces. The catalytic mechanism of TE domain can also be well explained based on the generated TE-palmitate complex structure. Moreover, the comparison of the binding modes of five fatty acids with chain lengths ranging from 12 to 20 carbons confirmed that the ligand binding pocket of TE domain is a decisive factor in chain length specificity. In addition, docking of two known TE inhibitors, c75 and orlistat revealed the pharmacophore of these hFAS TE inhibitors, which will prove useful in structure-based drug design against this important target.  相似文献   

3.
The objective of this study was to identify single nucleotide polymorphisms (SNPs) in the thioesterase (TE) domain of the bovine fatty acid synthase (FASN) gene and to evaluate the extent to which they were associated with beef fatty acid composition. The four exons in FASN that encode for the TE domain were sequenced, and three SNPs, AF285607:g.17924A>G, g.18663T>C and g.18727C>T, were identified. Purebred Angus bulls (n = 331) were classified into three genotype groups, g.17924AA (n = 121), g.17924AG (n = 168) and g.17924GG (n = 42). The g.17924A>G genotype was significantly associated with fatty acid composition of longissimus dorsi muscle of Angus bulls. Cattle with the g.17924GG genotype had lower myristic acid (C14:0; P < 0.0001), palmitic acid (C16:0, P < 0.05) and total saturated fatty acid contents (P < 0.01), greater health index (P < 0.001), oleic acid content (C18:1; P < 0.001) and total monounsaturated fatty acid concentration (P < 0.01) in the total lipids and triacylglycerols fraction than did those with the g.17924AA genotype. Because of the linkage disequilibrium between SNPs g.17924A>G and g.18663T>C, similar significant associations of fatty acid contents with the g.18663T>C genotypes were observed. In conclusion, the SNPs g.17924A>G and g.18663T>C may be used as DNA markers to select breeding stock that have a healthier fatty acid composition.  相似文献   

4.
Abstract

De novo lipogenesis (DNL) by upregulation of fatty acid synthase (FASN) is an important metabolic alteration of cancer cells. FASN is over-expressed in several cancers and is often associated with a high risk of recurrence and poor prognosis. Differential expression of FASN in cancer cells and their normal counterparts leads to the impression that FASN can be an attractive druggable target in cancer therapy. Present study focuses on identification of inhibitors against FASN ketoacyl synthase (KS) domain from Asinex Biodesign compound database using in silico tools. Virtual screening resulted in the identification of two hit compounds BDD27845077 and BDD27845082 with a common core structure. Molecular Docking studies showed that BDD27845077 and BDD27845082 bind at the substrate entry channel of KS domain with GScore –12.03?kcal/mol and –12.29?kcal/mol respectively. Molecular dynamics (MD) simulation of the protein-ligand complexes shows the binding stability of ligands with FASN-KS. In vitro validation of BDD27845082 demonstrated that the compound possesses antiproliferative activity in a panel of human cancer cell lines including MDA-MB-231 (breast cancer), HCT-116 (colon cancer) and HeLa (cervical cancer) with maximum sensitivity against HCT-116 (IC 50?=?25?µM). The study put forward two lead compounds against FASN with favorable pharmacokinetic profile as indicated by virtual screening tools for the development of cancer chemotherapeutics.  相似文献   

5.
杨柳  朱至  刘爱秋  吕雪峰 《生物工程学报》2013,29(11):1681-1686
利用基因工程大肠杆菌直接从头生物合成脂肪酸乙酯 (生物柴油) 的相关研究引起了国内外研究人员的广泛关注。在本课题组已经构建的能够从头合成脂肪酸乙酯的大肠杆菌菌株KC3的基础上,通过替换表达不同来源的硫酯酶,发现表达来源于香樟树的硫酯酶Cc FatB1基因能够提高脂肪酸乙酯产量。进一步通过共表达Cc FatB1和大肠杆菌硫酯酶tesA’基因,以及启动子优化,获得了高产脂肪酸乙酯工程菌株KC4。KC4菌株在摇瓶条件和发酵条件下的单位生物量脂肪酸乙酯产率分别为21.4 mg/ (L?OD600)和31.16 mg/ (L?OD600)。该工程菌株的构建进一步提高了脂肪酸乙酯产量,显示了通过基因工程改造大肠杆菌从头合成生物柴油的应用潜力。  相似文献   

6.
The distinguishing structural and functional domains of plant acyl-acyl carrier protein (ACP) thioesterases and their complex interaction with the ACP-linked fatty acid substrate complex have remained elusive. E. coli based heterologous expression and characterisation of many plant thioesterases reported so far have not been extended and linked to in silico modelling studies to explain the diversity in plant thioesterase substrate specificities. In this study, a thioesterase cDNA isolated from immature seed tissues of Jatropha curcas was found to be type B and specific to stearoyl acyl ACP when expressed in E. coli K27fadD88, a lipid utilisation mutant. Homology modelling and molecular docking of a selected region of the isolated JcFatB protein predicted that it had high affinity towards both stearate (18:0) and palmitate (16:0). Structural analysis of the sequence confirmed the presence of a transit peptide that is processed in multiple steps. The enzyme is localised in the chloroplasts and has an N-terminal inner chloroplast transmembrane domain characteristic of type B plant thioesterases. Docking of ligands with JcFatB and its comparison with a modelled Jatropha thioesterase type A provided further evidence for native substrate preferences of Jatropha thioesterases. This study provides essential clues to develop future methods for large-scale bacterial production of free fatty acids and for design of strategies to modulate the seed oil composition in this important non-edible, seed oil plant.  相似文献   

7.
Development of fatty acid synthase (FAS) inhibitors has increasingly attracted much attention in recent years due to their potential therapeutic use in obesity and cancers. In this investigation, pharmacophore modeling based on the first crystal structure of human KS domain of FAS was carried out. The established pharmacophore model was taken as a 3D query for retrieving potent FAS inhibitors from the chemical database Specs. Docking study was further carried out to refine the obtained hit compounds. Finally, a total of 28 compounds were selected based on the ranking order and visual examination, which were first evaluated by a cell line-based assay. Seven compounds that have good inhibition activity against two FAS overexpressing cancer cell lines were further evaluated by an enzyme-based assay. One compound with a new chemical scaffold was found to have low micromolar inhibition potency against FAS, which has been subjected to further chemical structural modification.  相似文献   

8.
The present work focused on the kinetics of the inhibitory effects of the leaf extract of Siberian Crabapple, named Shan jingzi in China, on chicken liver fatty acid synthase. The results showed that this extract had much stronger inhibitory ability on fatty acid synthase than that from green teas described in many previous reports. The inhibitory ability of this extract is closely related to the extracting solvent, and the time of extraction was also an important influencing factor. The inhibitory types of this extract on diffeerent substrates of chicken liver fatty acid synthase, acetyl-CoA, malonyl-CoA and NADPH, were found to be noncompetitive, uncompetitive and mixed, respectively. The studies here shed a new light on the exploration for inhibitors of fatty acid synthase.  相似文献   

9.
We designed and synthesized a new series of fatty acid synthase (FASN) inhibitors with potential utility for the treatment of cancer. Extensive SAR studies led to highly active FASN inhibitors with good cellular activity and oral bioavailability, exemplified by compound 34. Compound 34 is a potent inhibitor of human FASN (IC50?=?28?nM) that effectively inhibits proliferation of A2780 ovarian cells (IC50?=?13?nM) in lipid-reduced serum (LRS). This cellular activity can be rescued by addition of palmitate, consistent with an on-target effect. Compound 34 is also active in many other cell types, including PC3M (IC50?=?25?nM) and LnCaP-Vancouver prostate cells (IC50?=?66?nM), and is highly bioavailable (F 61%) with good exposure after oral administration. In a pharmacodynamics study in H460 lung xenograft-bearing mice, oral treatment with compound 34 results in elevated tumor levels of malonyl-CoA and decreased tumor levels of palmitate, fully consistent with the desired target engagement.  相似文献   

10.
Subtilisin hydrolysis of chicken liver fatty acid syntheiase yields polypeptides of molecular weights 220,000, 160,000 and 35,000. The larger peptides are further degraded to proteins of molecular weights 122,000 and 105,000. When 50% and 80% of the synthetase subunits are cleaved, there is a loss of 10% and 40% of fatty acid synthetase activity, respectively, indicating that proteolysis of the 240,000-mol. wt. subunit does not substantially affect palmitate synthesis provided that the component polypeptides remain associated with each other. Ammonium sulfate fractionation yields a fraction containing the palmitoyl thioesterase activity. Polyacrylamide gel electrophoresis of this fraction under both nondenaturing and denaturing conditions yields one band with an estimated molecular weight of 35,000. The isolated thioesterase is specific for palmitoyl and stearoyl thioesters (myristoyl-CoA is hydrolyzed at 15% the rate of palmitoyl-CoA). The enzyme is inhibited byN-ethylmaleimide and diisopropylfluorophosphate, suggesting that both an active -SH and -OH are involved in catalysis. However, preincubation of the thioesterase with decanoly-CoA protected the enzyme against inhibition by diisopropylfluorophosphate but not byN-ethylmaleimide, suggesting that an active OH (seryl or threonyl) is involved in the hydrolysis of the palmitoyl group. This active hydroxyl group is uniquely inhibited by diisopropylfluorophosphate, as evidenced by the incorporation of 2 mol of [32P]diisopropylfluorophosphate per mole of synthetase (M r = 480,000) and the fact that all the radioactivity was associated with the isolated thioesterase. These results indicate that there are two copies of the thioesterase per mole of synthetase or one copy of the enzyme per 240,000-mol. wt. subunit.  相似文献   

11.
Abstract

Phosphopantetheine adenylyltransferase (PPAT) has been recognized as a promising target to develop novel antimicrobial agents, which is a hexameric enzyme that catalyzes the penultimate step in coenzyme A biosynthesis. In this work, molecular modeling study was performed with a series of PPAT inhibitors using molecular docking, three-dimensional qualitative structure-activity relationship (3D-QSAR) and molecular dynamic (MD) simulations to reveal the structural determinants for their bioactivities. Molecular docking study was applied to understand the binding mode of PPAT with its inhibitors. Subsequently, 3D-QSAR model was constructed to find the features required for different substituents on the scaffolds. For the best comparative molecular field analysis (CoMFA) model, the Q2 and R2 values of which were calculated as 0.702 and 0.989, while they were calculated as 0.767 and 0.983 for the best comparative molecular similarity index analysis model. The statistical data verified the significance and accuracy of our 3D-QSAR models. Furthermore, MD simulations were carried out to evaluate the stability of the receptor–ligand contacts in physiological conditions, and the results were consistent with molecular docking studies and 3D-QSAR contour map analysis. Binding free energy was calculated with molecular mechanics generalized born surface area approach, the result of which coincided well with bioactivities and demonstrated that van der Waals accounted for the largest portion. Overall, our study provided a valuable insight for further research work on the recognition of potent PPAT inhibitors.

Communicated by Ramaswamy H. Sarma  相似文献   

12.
13.
Fatty acid synthase (FAS) is a potential target for cancer, but potent inhibitors against FAS are scarce. In this study, we found that activities of catechins on inhibiting FAS increased greatly by heating them in acid. The enhancement was positively correlated to H+ concentration. The inhibitory activities of the final products from different catechins were similar, all of which were less than 1 μg/mL. The product from ( ? )-epigallocatechin gallate (EGCG) was stable at room temperature, and its inhibitory kinetics and reacting sites on FAS were obviously different from the known FAS inhibitors. It also affected the viability of MCF-7 cells more obviously than EGCG. A putative route of the reaction progress was proposed and the effective inhibitors were deduced to be oligomers of 2-hydroxy-3-(3′, 4′, 5′-trihydroxyphenyl) propenoic acid by analysis of their spectra. The work affords new and potent FAS inhibitors that would be promising candidates for the treatment of cancer.  相似文献   

14.
Butyric acid and trichostatin A (TSA) are anti-cancer compounds that cause the upregulation of genes involved in differentiation and cell cycle regulation by inhibiting histone deacetylase (HDAC) activity. In this study we have synthesized and evaluated compounds that combine the bioavailability of short-chain fatty acids, like butyric acid, with the bidentate binding ability of TSA. A series of analogs were made to examine the effects of chain length, simple aromatic cap groups, and substituted hydroxamates on the compounds' ability to inhibit rat-liver HDAC using a fluorometric assay. In keeping with previous structure-activity relationships, the most effective inhibitors consisted of longer chains and hydroxamic acid groups. It was found that 5-phenylvaleric hydroxamic acid and 4-benzoylbutyric hydroxamic acid were the most potent inhibitors with IC50's of 5 μM and 133 μM respectively.  相似文献   

15.
16.
Master quorum sensing (QS) regulator LuxR of Vibrio harveyi is a unique member of the TetR protein superfamily. Recent studies have demonstrated the contribution of thiazolidinedione analogues in blocking QS by decreasing the DNA-binding ability of LuxR. However, the precise mechanism of thiazolidinedione analogues binding to LuxR is still unclear. In the present study, molecular docking combined with molecular dynamics (MD) simulations was performed to understand the mechanism of ligand binding to the protein. The binding pattern of thiazolidinedione analogues showed strong hydrogen bonding interactions with the amine group (NH) of polar amino acid residue Asn133 and carbonyl (C=O) interaction with negatively charged amino acid residue Gln137 in the binding site of LuxR. The stability of the protein–ligand complexes was confirmed by running 50 ns of MD simulations. Further, the four-featured pharmacophore hypothesis (AHHD) consists of one acceptor (A), two hydrophobic regions (HH) and one donor (D) group was used to screen compounds from ChemBridge database. The identified hit molecules were shown to have excellent pharmacokinetic properties under the acceptable range. Based on the computational studies, ChemBridge_5343641 was selected for in vitro assays. The 1-(4-chlorophenoxy)-3-[(4,6-dimethyl-2-pyrimidinyl)thio]-2-propanol (ChemBridge_5343641) showed significant reduction in bioluminescence in a dose-dependent manner. In addition, ChemBridge_5343641 inhibits biofilm formation and motility in V. harveyi. The result from the study suggests that ChemBridge_5343641 could serve as an anti-QS molecule.  相似文献   

17.
《Chirality》2017,29(1):10-13
The elevated activity of fatty acid synthase has been reported in a number of cancer types. Inhibition of this enzyme has been demonstrated to induce cancer cell death and reduce tumor growth. In addition, the fatty acid synthase inhibitor drug C75 has been reported to synergistically enhance the cancer‐killing ability of ionizing radiation. However, clinical use of C75 has been limited due to its producing weight loss, believed to be caused by alterations in the activity of carnitine palmitoyltransferase‐1. C75 is administered in the form of a racemic mixture of (−) and (+) enantiomers that may differ in their regulation of fatty acid synthase and carnitine palmitoyltransferase‐1. Therefore, we assessed the relative cancer‐killing potency of different enantiomeric forms of C75 in prostate cancer cells. These results suggest that (−)‐C75 is the more cytotoxic enantiomer and has greater radiosensitizing capacity than (+)‐C75. These observations will stimulate the development of fatty acid synthase inhibitors that are selective for cancer cells and enhance the tumor‐killing activity of ionizing radiation, while minimizing weight loss in cancer patients.  相似文献   

18.
Three series of novel urushiol derivatives were designed by introducing a hydroxamic acid moiety into the tail of an alkyl side chain and substituents with differing electronic properties or steric bulk onto the benzene ring and alkyl side chain. The compounds’ binding affinity toward HDAC8 was screened by Glide docking. The highest-scoring compounds were processed further with molecular docking, MD simulations, and binding free energy studies to analyze the binding modes and mechanisms. Ten compounds had Glide scores of ?8.2 to ?10.2, which revealed that introducing hydroxy, carbonyl, amino, or methyl ether groups into the alkyl side chain or addition of –F, –Cl, sulfonamide, benzamido, amino, or hydroxy substituents on the benzene ring could significantly increase binding affinity. Molecular docking studies revealed that zinc ion coordination, hydrogen bonding, and hydrophobic interactions contributed to the high calculated binding affinities of these compounds toward HDAC8. MD simulations and binding free energy studies showed that all complexes possessed good stability, as characterized by low RMSDs, low RMSFs of residues, moderate hydrogen bonding and zinc ion coordination and low values of binding free energies. Hie147, Tyr121, Phe175, Hip110, Phe119, Tyr273, Lys21, Gly118, Gln230, Leu122, Gly269, and Gly107 contributed favorably to the binding; and Van der Waals and electrostatic interactions provided major contributions to the stability of these complexes. These results show the potential of urushiol derivatives as HDAC8 binding lead compounds, which have great therapeutic potential in the treatment of various malignancies, neurological disorders, and human parasitic diseases.  相似文献   

19.
Urea-induced aggregation of chicken liver fatty acid synthase [acyl-CoA:malonyl-CoA C-acyltransferase (decarboxylating,oxoacyl- and enoyl-reducing and thioester-hydrolyzing), EC 2.3.1.85 ] was studied. The aggregation was facilitated at increased ionic strength. Methyl--cyclodextrin and some osmolytes, such as glycerol, sucrose, proline, glycine, and heparin, could effectively prevent the aggregation, implying an artificial chaperone role of those substances during fatty acid synthase unfolding. The osmolytes also protected the enzyme from inactivation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号