首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Adaptation to extreme environments affects the stability and catalytic efficiency of enzymes, often endowing them with great industrial potential. We compared the environmental adaptation of the secreted endonuclease I from the cold-adapted marine fish pathogen Vibrio salmonicida (VsEndA) and the human pathogen Vibrio cholerae (VcEndA). Kinetic analysis showed that VsEndA displayed unique halotolerance. It retained a considerable amount of activity from low concentrations to at least 0.6 m NaCl, and was adapted to work at higher salt concentrations than VcEndA by maintaining a low K(m) value and increasing k(cat). In differential scanning calorimetry, salt stabilized both enzymes, but the effect on the calorimetric enthalpy and cooperativity of unfolding was larger for VsEndA, indicating salt dependence. Mutation of DNA binding site residues (VsEndA, Q69N and K71N; VcEndA, N69Q and N71K) affected the kinetic parameters. The VsEndA Q69N mutation also increased the T(m) value, whereas other mutations affected mainly DeltaH(cal). The determined crystal structure of VcEndA N69Q revealed the loss of one hydrogen bond present in native VcEndA, but also the formation of a new hydrogen bond involving residue 69 that could possibly explain the similar T(m) values for native and N69Q-mutated VcEndA. Structural analysis suggested that the stability, catalytic efficiency and salt tolerance of EndA were controlled by small changes in the hydrogen bonding networks and surface electrostatic potential. Our results indicate that endonuclease I adaptation is closely coupled to the conditions of the habitats of natural Vibrio, with VsEndA displaying a remarkable salt tolerance unique amongst the endonucleases characterized so far.  相似文献   

2.
An open and a closed conformation of a surface loop in PhaZ7 extracellular poly(3‐hydroxybutyrate) depolymerase were identified in two high‐resolution crystal structures of a PhaZ7 Y105E mutant. Molecular dynamics (MD) simulations revealed high root mean square fluctuations (RMSF) of the 281–295 loop, in particular at residue Asp289 (RMSF 7.62 Å). Covalent docking between a 3‐hydroxybutyric acid trimer and the catalytic residue Ser136 showed that the binding energy of the substrate is significantly more favorable in the open loop conformation compared to that in the closed loop conformation. MD simulations with the substrate covalently bound depicted 1 Å RMSF higher values for the residues 281–295 in comparison to the apo (substrate‐free) form. In addition, the presence of the substrate in the active site enhanced the ability of the loop to adopt a closed form. Taken together, the analysis suggests that the flexible loop 281–295 of PhaZ7 depolymerase can act as a lid domain to control substrate access to the active site of the enzyme. Proteins 2017; 85:1351–1361. © 2017 Wiley Periodicals, Inc.  相似文献   

3.
Zhang Z  Boyle PC  Lu BY  Chang JY  Wriggers W 《Biochemistry》2006,45(51):15269-15278
Epidermal growth factor (EGF) regulates cell proliferation and differentiation by binding to the EGF receptor (EGFR) extra-cellular domains. Human EGF is a small, single-chain protein comprising three distinct loops (A, B, and C), which are connected by three disulfide bridges (Cys6-Cys20, Cys14-Cys31, and Cys33-Cys42). These disulfide bridges are essential for structural stability and biological activity. EGF was extensively studied by disulfide scrambling, an experimental technique for the conformational entrapment of intermediate states, which allows us to study the folding pathway of proteins containing disulfide bonds. The experimental results showed that there is a major 2-disulfide intermediate (denoted EGF-II) and that the native disulfide bonding pattern is less prevalent in one of the mutants. In this article, we investigated for the first time the solution conformations of wild-type EGF, EGF-II, and the mutant S9C through extensive molecular dynamics (MD) simulations in water using both the standard MD technique and a recently developed amplified-collective-motion (ACM) sampling method. Compared to standard MD simulations, we achieved a much more enhanced sampling by the ACM simulations, and the structures were sufficiently relaxed to estimate configurational entropies. The simulation results suggest a predominantly entropic folding pathway governed by the disorder of three functional loop regions. Although EGF-II exhibits two native disulfide bonds (Cys14-Cys31 and Cys33- Cys42), its large configurational entropy inhibits a direct transition to the native structure in the folding process. When Ser9 is mutated into Cys, a non-native disulfide bridge Cys9- Cys20 is slightly more favorable than the native Cys6-Cys20 because a less constrained N-terminus affords larger entropy. Isomers that are functionally less active also exhibit a more localized dynamics of the functional loop regions, which may suggest a possible mechanism for the modulation of EGF activity.  相似文献   

4.
D E Helland  R Male  K Kleppe 《FEBS letters》1987,213(1):215-220
A DNA endonuclease activity present in calf thymus specific for incision on DNA damaged by ultraviolet light, osmium tetroxide, potassium permanganate, hydrogen peroxide and acid has been purified from whole cell extracts. The enzymatic activity was heterogeneous both with regard to molecular mass and charge. The molecular mass of the enzyme varied from 25 to 35 kDa, but the different enzymatic species appeared to possess similar activities. The enzymes acted equally well on damage in supercoiled and relaxed forms of DNA. It further had a narrow optimum with regard to salt concentrations, the optimum activity being observed at a concentration of KCl from 40 to 65 mM.  相似文献   

5.
6.
Ma L  Sundlass NK  Raines RT  Cui Q 《Biochemistry》2011,50(2):266-275
Revealing the thermodynamic driving force of protein-DNA interactions is crucial to the understanding of factors that dictate the properties and function of protein-DNA complexes. For the binding of DNA to DNA-wrapping proteins, such as the integration host factor (IHF), Record and co-workers proposed that the disruption of a large number of preexisting salt bridges is coupled with the binding process [Holbrook, J. A., et al. (2001) J. Mol. Biol. 310, 379]. To test this proposal, we have conducted explicit solvent MD simulations (multiple ~25-50 ns trajectories for each salt concentration) to examine the behavior of charged residues in IHF, especially concerning their ability to form salt bridges at different salt concentrations. Of the 17 cationic residues noted by Record and co-workers, most are engaged in salt bridge interactions for a significant portion of the trajectories, especially in the absence of salt. This observation suggests that, from a structural point of view, their proposal is plausible. However, the complex behaviors of charged residues observed in the MD simulations also suggest that the unusual thermodynamic characteristics of IHF-DNA binding likely arise from the interplay between complex dynamics of charged residues both in and beyond the DNA binding site. Moreover, a comparison of MD simulations at different salt concentrations suggests that the strong dependence of the IHF-DNA binding enthalpy on salt concentration may not be due to a significant decrease in the number of stable salt bridges in apo IHF at high salt concentrations. In addition to the Hofmeister effects quantified in more recent studies of IHF-DNA binding, we recommend consideration of the variation of the enthalpy change of salt bridge disruption at different salt concentrations. Finally, the simulation study presented here explicitly highlights the fact that the electrostatic properties of DNA-binding proteins can be rather different in the apo and DNA-bound states, which has important implications for the design of robust methods for predicting DNA binding sites in proteins.  相似文献   

7.
Conformational properties of a UV-damaged DNA decamer containing a cis.syn cyclobutane thymine dimer (PD) have been investigated by molecular dynamics (MD) simulations. Results from MD simulations of the damaged decamer DNA show a kink of approximately 21.7 degrees at the PD damaged site and a disruption of H bonding between the 5'-thymine of the PD and its complementary adenine. However, no extra-helical flipping of the 3'-adenine complementary to the PD was observed. Comparison to two undamaged DNA decamers, one with the same sequence and the other with an AT replacing the TT sequence, indicates that these properties are specific to the damaged DNA. Essential dynamics (ED) derived from the MD trajectories of the three DNAs show that the backbone phosphate between the two adenines complementary to the PD of the damaged DNA has considerably larger mobility than the rest of the molecule and occurs only in the damaged DNA. As observed in the crystal structure of T4 endonuclease V in a complex with the damaged DNA, the interaction of the enzyme with the damaged DNA can lead to bending along the flexible joint and to induction of adenine flipping into an extra-helical position. Such motions may play an important role in damage recognition by repair enzymes.  相似文献   

8.
The pleckstrin homology (PH) domain of the general receptor for phosphoinositides 1 (GRP1) exhibits specific, high-affinity, reversible binding to phosphatidylinositol (3,4,5)-trisphosphate (PI(3,4,5)P(3)) at?the plasma membrane, but the nature and extent of the interaction between this bound complex and the surrounding membrane environment remains unclear. Combining equilibrium and nonequilibrium molecular dynamics (MD) simulations, NMR spectroscopy, and monolayer penetration experiments, we characterize the membrane-associated state of?GRP1-PH. MD simulations show loops flanking the binding site supplement the interaction with PI(3,4,5)P(3) through multiple contacts with the lipid bilayer. NMR data show large perturbations in chemical shift for these loop regions on binding to PI(3,4,5)P(3)-containing DPC micelles. Monolayer penetration experiments and further MD simulations demonstrate that mutating hydrophobic residues to polar residues in the flanking loops reduces membrane penetration. This supports a "dual-recognition" model of binding, with specific GRP1-PH-PI(3,4,5)P(3) interactions supplemented by interactions of loop regions with the lipid bilayer.  相似文献   

9.
Archaeal splicing endonucleases (EndAs) are currently classified into three groups. Two groups require a single subunit protein to form a homodimer or homotetramer. The third group requires two nonidentical protein components for the activity. To elucidate the molecular architecture of the two-subunit EndA system, we studied a crenarchaeal splicing endonuclease from Pyrobaculum aerophilum. In the present study, we solved a crystal structure of the enzyme at 1.7-Å resolution. The enzyme adopts a heterotetrameric form composed of two catalytic and two structural subunits. By connecting the structural and the catalytic subunits of the heterotetrameric EndA, we could convert the enzyme to a homodimer that maintains the broad substrate specificity that is one of the characteristics of heterotetrameric EndA. Meanwhile, a deletion of six amino acids in a Crenarchaea-specific loop abolished the endonuclease activity even on a substrate with canonical BHB motif. These results indicate that the subunit architecture is not a major factor responsible for the difference of substrate specificity between single- and two-subunit EndA systems. Rather, the structural basis for the broad substrate specificity is built into the crenarchaeal splicing endonuclease itself.  相似文献   

10.
Comparative or homology modeling of a target protein based on sequence similarity to a protein with known structure is widely used to provide structural models of proteins. Depending on the target‐template similarity these model structures may contain regions of limited structural accuracy. In principle, molecular dynamics (MD) simulations can be used to refine protein model structures and also to model loop regions that connect structurally conserved regions but it is limited by the currently accessible simulation time scales. A recently developed biasing potential replica exchange (BP‐REMD) method was used to refine loops and complete decoy protein structures at atomic resolution including explicit solvent. In standard REMD simulations several replicas of a system are run in parallel at different temperatures allowing exchanges at preset time intervals. In a BP‐REMD simulation replicas are controlled by various levels of a biasing potential to reduce the energy barriers associated with peptide backbone dihedral transitions. The method requires much fewer replicas for efficient sampling compared with T‐REMD. Application of the approach to several protein loops indicated improved conformational sampling of backbone dihedral angle of loop residues compared to conventional MD simulations. BP‐REMD refinement simulations on several test cases starting from decoy structures deviating significantly from the native structure resulted in final structures in much closer agreement with experiment compared to conventional MD simulations. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

11.
Mammalian AP endonuclease 1 is a pivotal enzyme of the base excision repair pathway acting on apurinic/apyrimidinic sites. Previous structural and biochemical studies showed that the conserved Asn-212 residue is important for the enzymatic activity of APE1. Here, we report a comprehensive pre-steady-state kinetic analysis of two APE1 mutants, each containing amino acid substitutions at position 212, to ascertain the role of Asn-212 in individual steps of the APE1 catalytic mechanism. We applied the stopped-flow technique for detection of conformational transitions in the mutant proteins and DNA substrates during the catalytic cycle, using fluorophores that are sensitive to the micro-environment. Our data indicate that Asn-212 substitution by Asp reduces the rate of the incision step by ∼550-fold, while Ala substitution results in ∼70,000-fold decrease. Analysis of the binding steps revealed that both mutants continued to rapidly and efficiently bind to abasic DNA containing the natural AP site or its tetrahydrofuran analogue (F). Moreover, transient kinetic analysis showed that N212A APE1 possessed a higher binding rate and a higher affinity for specific substrates compared to N212D APE1. Molecular dynamics (MD) simulation revealed a significant dislocation of the key catalytic residues of both mutant proteins relative to wild-type APE1. The analysis of the model structure of N212D APE1 provides evidence for alternate hydrogen bonding between Asn-212 and Asp-210 residues, whereas N212A possesses an extended active site pocket due to Asn removal. Taken together, these biochemical and MD simulation results indicate that Asn-212 is essential for abasic DNA incision, but is not crucial for effective recognition/binding.  相似文献   

12.
Altered prolyl oligopeptidase (PREP) activity is found in many common neurological and other genetic disorders, and in some cases PREP inhibition may be a promising treatment. The active site of PREP resides in an internal cavity; in addition to the direct interaction between active site and substrate or inhibitor, the pathway to reach the active site (the gating mechanism) must be understood for more rational inhibitor design and understanding PREP function. The gating mechanism of PREP has been investigated through molecular dynamics (MD) simulation combined with crystallographic and mutagenesis studies. The MD results indicate the inter-domain loop structure, comprised of 3 loops at residues, 189-209 (loop A), 577-608 (loop B), and 636-646 (loop C) (porcine PREP numbering), are important components of the gating mechanism. The results from enzyme kinetics of PREP variants also support this hypothesis: When loop A is (1) locked to loop B through a disulphide bridge, all enzyme activity is halted, (2) nicked, enzyme activity is increased, and (3) removed, enzyme activity is only reduced. Limited proteolysis study also supports the hypothesis of a loop A driven gating mechanism. The MD results show a stable network of H-bonds that hold the two protein domains together. Crystallographic study indicates that a set of known PREP inhibitors inhabit a common binding conformation, and this H-bond network is not significantly altered. Thus the domain separation, seen to occur in lower taxa, is not involved in the gating mechanism for mammalian PREP. In two of the MD simulations we observed a conformational change that involved the breaking of the H-bond network holding loops A and B together. We also found that this network was more stable when the active site was occupied, thus decreasing the likelihood of this transition.  相似文献   

13.
We previously reported a double-stranded endonuclease from HeLa cells, endonuclease R (endo R), which specifically cleaves duplex DNA at sites rich in G.C base pairs. In this report we describe the purification of endo R to near homogeneity by conventional and affinity chromatography. The molecular mass of the active form of endo R is approximately 115-125 kDa. SDS-gel electrophoresis reveals a major protein species of 100 kDa. The enzyme requires Mg2+ as a cofactor and is equally active on closed circular and linear duplex DNA substrates that contain G-rich sequences. A 50% reduction in cleavage activity is observed with Ca2+ ions and no double-stranded cleavage occurs with Zn2+. Use of Mn2+ causes an altered specificity at low concentrations of enzyme or divalent metal ion and nonspecific degradation of the substrate at higher concentrations. Endo R is strongly inhibited by sodium or potassium chloride and exhibits a wide pH optimum of 6.0-9.0. The pI of the enzyme is between 6.5 and 7.0. A 2-fold stimulation is observed with the addition of dGTP or dATP but specific cleavage is inhibited by ATP at an equivalent concentration. Cleavage activity is competitively inhibited 10-fold more efficiently by single-stranded poly(dG)12 than by other DNA competitors. The ends of endo R cleavage products contain 5'-phosphate and 3'-hydroxyl groups, and a significant portion of these products were substrates for T4 DNA ligase. Endo R appears to be a previously uncharacterized mammalian endonuclease.  相似文献   

14.
Doan L  Handa B  Roberts NA  Klumpp K 《Biochemistry》1999,38(17):5612-5619
The influenza virus RNA-dependent RNA polymerase protein complex contains an associated RNA endonuclease activity, which cleaves host mRNA precursors in the cell nucleus at defined positions 9-15 nucleotides downstream of the cap structure. This reaction provides capped oligoribonucleotides, which function as primers for the initiation of viral mRNA synthesis. The endonuclease reaction is dependent on the presence of divalent metal ions. We have used a number of divalent and trivalent metal ions alone and in combination to probe the mechanism of RNA cleavage by the influenza virus endonuclease. Virus-specific cleavage was observed with various metal ions, and maximum cleavage activity was obtained with 100 microM Mn2+ or 100 microM Co2+. This activity was about 2-fold higher than that observed with Mg2+ at the optimal concentration of 1 mM. Activity dependence on metal ion concentration was cooperative with Hill coefficients close to or larger than 2. Synergistic activation of cleavage activity was observed with combinations of different metal ions at varying concentrations. These results support a two-metal ion mechanism of RNA cleavage for the influenza virus cap-dependent endonuclease. The findings are also consistent with a structural model of the polymerase, in which the specific endonuclease active site is spatially separated from the nucleotidyl transferase active site of the polymerase module.  相似文献   

15.
Lysyl oxidase the enzyme which oxidately deaminates lysine residues in collagen and elastin, was purified from embryonic chick cartialge by employing an affinity column of lathyritic rat skin collagen coupled to Sepharose, followed by separation on DEAE-cellulose. An enzyme preparation was obtained which was pure as shown by polyacrylamide gel electrophoresis. The specific activity was 1800-fold higher than that of the original extract. The pure enzyme utilized both collagen and elastin substrate. Furthermore, the ratios of enzyme activity with elastin substrate versus that with collagen substrate were the same at all stages of purity. Only one protein band was found after polyacrylamide gel electrophoresis of the pure lysyl oxidase in sodium dodecyl sulfate and mercaptoethanol. The molecular weight was estimated to be 28000. It was found that the enzyme contained a large number of cysteine and tyrosine residues. Evidence was obtained for molecular heterogeneity of lysyl oxidase. The enzyme eluted from DEAE-cellulsoe in at least four distinct regions. When the peaks were rechromatographed separately, they eluted at salt concentrations similar to those of the original chromatogram. However, the substrate specificity and the electrophoretic mobility on polyacrylamide gel were the same for all enzyme fractions.  相似文献   

16.
There is a change from three-state to two-state kinetics of folding across the homeodomain superfamily of proteins as the mechanism slides from framework to nucleation-condensation. The tendency for framework folding in this family correlates with inherent helical propensity. The cellular myeloblastis protein (c-Myb) falls in the mechanistic transition region. An earlier, preliminary report of protein engineering experiments and molecular dynamics simulations (MD) showed that the folding mechanism for this protein has aspects of both the nucleation-condensation and framework models. In the more in-depth analysis of the MD trajectories presented here, we find that folding may be attributed to both of these mechanisms in different regions of the protein. The folding of the loop, middle helix, and turn is best described by nucleation-condensation, whereas folding of the N and C-terminal helices may be described by the framework model. Experimentally, c-Myb folds by apparent two-state kinetics, but the MD simulations predict that the kinetics hide a high-energy intermediate. We stabilized this hypothetical folding intermediate by deleting a residue (P174) in the loop between its second and third helices, and the mutant intermediate is long-lived in the simulations. Equilibrium and kinetic experiments demonstrate that folding of the DeltaP174 mutant is indeed three-state. The presence and shape of the intermediate observed in the simulations were confirmed by small angle X-ray scattering experiments.  相似文献   

17.
Ribonuclease-A is a small enzyme contains an active site with positive charges for its substrate. His12 and His119 of its active site play critical role in enzyme catalysis. Salts show a bell-shaped profile on enzyme activity with an optimum salt concentration of about 0.1?M for optimum activity. The mechanism of decreased activity of the enzyme at low salt concentrations is not clear. In this work, we made a new effort to study the molecular events causing inactivation of RNase-A at low concentrations of NaCl. Our molecular dynamic result confirms that decrease in salt concentrations below an optimal level leads to an enzyme structure with lower dynamism and flexibility than that needed for optimum activity.  相似文献   

18.
Inosine monophosphate dehydrogenase (IMPDH) of human is involved in GMP biosynthesis pathway, increased level of IMPDH‐II (an isoform of enzyme) activity have found in leukemic and sarcoma cells. Modeling and extensive molecular dynamics simulation (15 ns) studies of IMPDH‐II (1B3O PDB structure) have indicated the intricate involvement of four conserved water molecules (W 1, W 2, W 3, and W 4) in the conformational transition or the mobilities of “flap” (residues 400–450) and “loop” (residues 325–342) regions in enzyme. The stabilization of active site residues Asn 303, Gly 324, Ser 329, Cys 331, Asp 364, and Tyr 411 through variable H‐bonding coordination from the conserved water molecular center seems interesting in the uninhibited hydrated form of human IMPDH‐II structures. This conformational transition or the flexibility of mobile regions, water molecular recognition to active site residues Cys 331 and Tyr 411, and the presence of a hydrophilic cavity ~540 Å3 (enclaved by the loop and flap region) near the C‐terminal surface of this enzyme may explore a rational hope toward the water mimic inhibitor or anticancer agent design for human. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
Piana S  Rothlisberger U 《Proteins》2004,55(4):932-941
Molecular dynamics (MD) simulations of the structural rearrangements on the pathway leading to procaspase 3 activation are presented. A retrostructural approach is used to build procaspase 3 from mature caspase 3. The peptide bond that is cleaved during enzyme maturation is gradually reformed during the MD simulation and the most relevant structural changes that occur as a consequence are analyzed. The main structural features that characterize this procaspase 3 model are compared with the available X-ray structure of procaspase 7 as the only zymogen structure that has been crystallised so far. The MD simulations indicate that in the free caspase 3, the flexible selectivity loop is already preorganized to accomodate the substrate. Such a preorganization is not present in either monomeric caspase 3 or in the procaspase 3 dimer, indicating that the structure of the selectivity loop is highly sensitive to perturbations.  相似文献   

20.
Enzymes from thermophiles are poorly active at temperatures at which their mesophilic homologs exhibit high activity and attain corresponding active states at high temperatures. In this study, comparative molecular dynamics (MD) simulations, supplemented by normal mode analysis, have been performed on an enzyme Adenylosuccinate synthetase (AdSS) from E. coli (mesophilic) and P. horikoshii (thermophilic) systems to understand the effects of loop dynamics on thermal stability of AdSS. In mesophilic AdSS, both ligand binding and catalysis are facilitated through the coordinated movement of five loops on the protein. The simulation results suggest that thermophilic P. horikoshii preserves structure and catalytic function at high temperatures by using the movement of only a subset of loops (two out of five) for ligand binding and catalysis unlike its mesophilic counterpart in E. coli. The pre-arrangement of the catalytic residues in P. horikoshii is well-preserved and salt bridges remain stable at high temperature (363K). The simulations suggest a general mechanism (including pre-arrangement of catalytic residues, increased polar residue content, stable salt bridges, increased rigidity, and fewer loop movements) used by thermophilic enzymes to preserve structure and be catalytically active at elevated temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号