首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Developmental events in the formation of reproductive structures in tetrasporangial, male, and female plants of Amphiroa ephedraea from South Africa were studied. An early step in the formation of a conceptacle is the elongation of a stratum of cortical cells, the cavity cells, to form a dome surmounted by an a cellular cap. Atrophy of the cavity cells to form a conceptacular cavity accompanies the subsequent development of reproductive structures. Tetrasporangial conceptacles differ from sexual conceptacles in that the reproductive cells develop in a peripheral ring and in the fact that the tissue lateral to these cells does not overgrow the fertile area. Finally, a comparison of some of the features of reproduction in A. ephedraea is made zuith. comparable features in other corallines.  相似文献   

2.
该研究以雌雄异株植物罗汉松(Podocarpus macrophyllus)成熟叶为研究材料,采用光学显微镜、扫描电镜和透射电镜观察比较罗汉松雌、雄植株叶在形态、显微结构和超显微结构的差异,以明确罗汉松雌、雄株在进化过程中叶对环境功能的适应性。结果显示:(1)罗汉松雌株的叶片大于雄株,且两者的叶长、叶宽和叶柄长差异极显著,而叶柄厚、叶面积、叶体积、叶质量、比叶重(SLW)、面积与体积之比(A/V)等性状无显著差异。(2)雌株叶片的气孔相对较大,密度较高,且雌株气孔宽度极显著大于雄株;雌株叶片的上表皮长细胞宽度和下表皮短细胞宽度均显著大于雄株,但雌株叶片的上表皮长细胞和短细胞的长度则显著小于雄株。(3)罗汉松雌株叶片的栅栏组织厚度、海绵组织厚度、传输组织长度和宽度、上下角质层厚度、维管束厚度、叶片紧密度(CTR)及疏松度(SR)均极显著大于雄株,而雌株的下表皮厚度极显著小于雄株,但雌雄株叶片的上表皮细胞厚度和栅海比差异不显著;雌株叶片的栅栏组织细胞、叶绿体和线粒体均较雄株的长而细,且雌株的线粒体宽度极显著小于雄株。(4)罗汉松雌株叶片上表皮蜡质饰纹、下表皮角质层纹饰、气孔外拱盖纹饰及内缘类型等4个微形态特征与雄株差异明显。(5)叶表皮蜡质层能谱分析表明,罗汉松雌株叶片含有9种元素,而雄株叶片仅有8种(缺少K元素);且雌株的Si元素含量高于雄株,而雄株的C、O、Na、Mg、Al、Ca和Au元素含量均高于雌株。研究表明,罗汉松雌、雄植株之间存在明显的第二性征,雌株叶片结构有助于提高光合等性能以满足生殖需求;罗汉松雌、雄株叶形态结构的差异是其长期进化形成的有利于物种繁衍的适应策略。  相似文献   

3.
Susan D. Waaland 《Planta》1978,138(1):65-68
Somatic cell fusion between vegetative cells of a male and a female isolate of Griffithsia tenuis, a marine red alga, has been obtained. Hybrid cells have been isolated and they have regenerated new plants. Almost all these hybrid plants made reproductive structures. In nearly half these cases the first 3–10 cells of the hybrid filament produced reproductive structures chracteristic of the tetrasporic (diploid) phase rather than the sexual (haploid) phase of the life cycle of this alga. However as these filaments continued to grow, cells further along the filament began to produce sexual, either female or male, reproductive structures. The observations suggest that the production of tetrasporangial branches does not require the fusion of male and female nucleic; rather, male and female nucleic remaining separate, act in concert to produce these structures, and in subsequent cell divisions the nuclei of one sex may be left behind allowing the nuclei of the remaining sex to direct the production of sexual branches.  相似文献   

4.
The content of endogenous cytokinins has been analysed in leaf and inflorescence extracts of male and female R. acetosella plants, using gas chromatography. Plant parts were extracted at four stages of development: leaves of juvenile plants, leaves of adult plants at the time of flower initiation and in full bloom, and upper internodes of the inflorescence stalks. Cytokinins with characteristics similar to isopentenyl adenine and adenosin, zeatin, zeatin riboside, and a bound form of zeatin, were all found in the extracts. The total amount of cytokinins was higher in female than in male plants during all these stages.Reprint requests  相似文献   

5.
Ahnfeltia plicata (Hudson) Fries, the type species of Ahnfeltia Fries, is currently assigned to the Phyllophoraceae (Gigartinales). Several morphological and biochemical characters distance A. plicata from the Phyllophoraceae but, because sexual reproduction has never been demonstrated, an alternative placement has not been possible. A. plicata now is shown to have a heteromorphic sexual life history. Erect branched gametophytes are dioecious. In male sori, spermatangia are cut off transversely from spermatangial mother cells. Female sori form numerous terminal sessile carpogonia. Following fertilization, several zygotes in each sorus fuse facultatively with undifferentiated intercalary cells of the female sorus and cut off gonimoblast initials obliquely outwards. These initials give rise to branching gonimoblast filaments that fuse with apical and intercalary female sorus cells and with each other, then grow radially outward in the compound external carposporophyte and terminate in carposporangia. Carpospores develop in culture into crustose tetrasporophytes identical to Porphyrodiscus simulans Batters. Field-collected P. simulans tetraspores grew into erect A. plicata axes. Tetrasporangia are formed by division and enlargement of crust apical cells followed by sequential enlargement and maturation of tetrasporocytes in an erosive process. Monosporangia are formed in sori on male gametophytes. Pit plugs of both gametophyte and tetrasporophyte phases consist of naked plug cores without cap layers of membranes. Gametophytes exhibit both cell fusions and secondary pit connections whereas tetrasporophytes form cell fusions but lack secondary pit connections. On the basis of the unique female and postfertilization reproductive development and in conjunction with the pit plug structure which is unique among florideophytes, the order Ahnfeltiales, containing the family Ahnfeltiaceae, is proposed.  相似文献   

6.
最近在中国内蒙古发现了乌兰坝紫萼藓(Grimmia ulaandamana J. Mu?oz, C. Feng, X.L. Bai&J. Kou)的可育植株,介绍了乌兰坝紫萼藓成熟孢子体、雌株和雄株的特征。孢子体的孢蒴长于蒴柄,蒴柄弯曲,蒴壶表面具纵褶,蒴壁中部表皮细胞厚壁,环带细胞方形或短长方形,蒴盖有喙;蒴齿具疣并在上部分叉,蒴齿在基部分开,蒴齿基部低于蒴壶口,蒴壁表皮细胞和蒴齿之间存在一层小型细胞,蒴齿骨小梁在基部1/3处强烈凸出;蒴帽基部完整。最内侧雌苞叶较茎叶大。乌兰坝紫萼藓具有重要的形态特征变异,可育植株与相似种直叶紫萼藓(G. elatior)易于区分。对乌兰坝紫萼藓进行了全面的描述并配显微图,探讨了孢子体对确定其系统发育位置的重要性。  相似文献   

7.
Two new taxa of Liagoraceae (Nemaliales) are described from Western Australia. Gloiotrichus fractalis gen. et sp. nov. has been collected from 3–20 m depths at the Houtman Abrolhos, Western Australia. Plants are calcified, extremely lubricous, and grow to 17 cm in length. Carpogonial branches are straight, 6 or 7 cells in length, arise from the basal or lower cells of cortical fascicles, and are occasionally compound. Branched sterile filaments of narrow elongate cells arise on the lower cells of the carpogonial branch prior to gonimoblast initiation, at first on the basal cells, then on progressively more distal cells. Following presumed fertilisation the carpogonium divides transversely, with both cells giving rise to gonimoblast filaments. The distal cells of the carpogonial branch then begin to fuse, with fusion progressing proximally until most of the cells of the carpogonial branch are included. As fusion extends, the filaments on the carpogonial branch are reduced to the basal 2 or 3 cells. The gonimoblast is compact and bears terminal carposporangia. Spermatangial clusters arise on subterminal cells of the cortex, eventually displacing the terminal cells. The sequence of pre- and post-fertilisation events occurring in the new genus separates it from all others included in the Liagoraceae, although it appears to have close affinities with the uncalcified genus Nemalion. Ganonema helminthaxis sp. nov. was collected from 12 m depths at Rottnest Island, Western Australia. Plants are uncalcified and mucilaginous, the axes consisting of a few (< 10) primary medullary filaments, each cell of which gives rise to a cortical fascicle at alternate forks of the pseudodichotomies borne on successive medullary cells. Subsidiary (adventitious) filaments and rhizoids comprise the bulk of the thallus. Carpogonial branches are straight, (3-)4(-6) cells in length, arise on the basal 1–4 cells of the cortical fascicles, and are frequently compound. Carposporophytes develop from the upper of two daughter cells formed by a transverse division of the fertilised carpogonium. Ascending and descending sterile filaments girdle the carpogonial branch cells and arise mostly on the supporting cell prior to fertilisation. Ganonema helminthaxis is the first completely non-calcified member of the genus, and its reproductive and vegetative morphology supports the recognition of Ganonema as a genus independent from Liagora. Liagora codii Womersley is a southern Australian species displaying features of Ganonema, to which it is transferred.  相似文献   

8.
Protein-tyrosine phosphorylation is regulated by protein-tyrosine kinases and protein-tyrosine phosphatases (PTPs). Src-family tyrosine kinases (SFKs) participate in the regulation of the actin cytoskeleton. Actin filaments can be accumulated in a cap at the dorsal cell surface, which is called the cortical actin cap. Here, we show that SFKs play an important role in formation of the cortical actin cap. HeLa cells normally exhibit the cortical actin cap, one of the major sites of tyrosine phosphorylation. The cortical actin cap is disrupted by SFK inhibitors or overexpression of the Lyn SH3 domain. Csk-knockout cells form the cortical actin cap when the level of tyrosine phosphorylation is increased by Na3VO4, a PTP inhibitor, and the formation of the cortical actin cap is inhibited by SFK inactivation with re-introduction of Csk. SYF cells lacking SFKs minimally exhibit the cortical actin cap even in the presence of Na3VO4, and transfection with Lyn restores the cortical actin cap in the presence of Na3VO4. Disruption of the cortical actin cap by dominant-negative Cdc42 causes loss of tyrosine phosphorylation at the cell top. These results suggest that SFK(s) is involved in formation of the cortical actin cap, which may serve as a platform of tyrosine phosphorylation signaling.  相似文献   

9.
The morphology and phenology of Sirodotia huillensis was evaluated seasonally in a central Mexican first‐order calcareous stream. Water temperature was constant (24–25°C) and pH circumneutral to alkaline (6.7–7.9), and calcium and sulfates were the dominant ions. The gametophyte stages were characterized by the presence of a distinctive mucilaginous layer, a marked difference in phycocyanin to phycoerythrin ratio between female and male plants, and the presence of a carpogonia with a large trichogyne (>60 µm). Occasionally three capogonia were observed on a single basal cell. The ‘Chantransia’ stages were morphologically similar to those described for the other members of Batrachospermales. A remarkable observation was the formation of dome‐shaped structures, consisting of prostrate filaments that are related with the development of new gametophytes. Chromosome numbers were n = 4 for fascicle cells, cortical filament cells and dome‐shaped cells, and 2n = 8 for gonimoblast filament cells and ‘Chantransia’ stage filaments. Gametophytes and ‘Chantransia’ stages occurred in fast current velocities (60–170 cm/s) and shaded (33.1–121 µmol photons/m2/s) stream segments. The population fluctuated throughout the study period in terms of percentage cover and frequency: the ‘Chantransia’ stages were most abundant in the rainy season, whereas gametophytic plants had the highest frequency values during the dry season. These results were most likely a result of fluctuations in rainfall and related changes in current velocity. Some characteristics of this population can be viewed as probable adaptations to high current velocities: the mucilaginous layer around plants that reduces drag; potential increase in fertilization by the elongate and plentiful trichogynes and abundant dome‐shaped structures producing several gametophytes.  相似文献   

10.
Hybrid cells were obtained from somatic cell fusion among male, female, and tetrasporangial plants in Griffithsia japonica Okamura by a wound-healing process. Isolated fusion cells regenerated new mature plants with mixed reproductive structures. The plants regenerated from hybrid cells between male and female plants developed into 1) spermatangiate, 2) carpogonial, 3) bisexual with spermatangia and carpogonial branches, 4) mixed-phase with spermatangia and tetrasporangia, or 5) bisexual/mixed-phase plants with spermatangia, carpogonial branches, and tetrasporangia. About 70% of the plants regenerated from hybrid cells between male and female plants produced tetrasporangia that were always formed with spermatangia on a single cell. Some of those tetrasporangia released tetraspores, six of which gave rise to mature plants. The plants regenerated from hybrid cells between male and tetrasporangial plants developed into spermatangiate, tetrasporangiate, or mixed-phase plants with spermatangia and tetrasporangia. The plants regenerated from hybrid cells between female and tetrasporangial plants developed into carpogonial, tetrasporangiate, or mixed-phase plants with carpogonial branches and tetrasporangia. All types of reproductive structures we re functional.  相似文献   

11.
The detailed segregative cell division (SCD) processes and changes in the arrangement of cortical microtubules and actin filaments were examined in two species of Struvea. SCD was initiated by the appearance of annular constrictions along the lateral side of a mother cell. The constrictions decreased in diameter, became thin, tubular in shape, and pinched the protoplasm of the mother cell into several protoplasmic sections. The protoplasmic sections expanded and developed into daughter cells, which appressed each other, and were arranged in a single row. Lateral branches protruded from the upper parts of the daughter cells. The protoplasm of the lateral branches was divided by secondary SCDs and was distributed amongst the new daughter cells. SCD and lateral branch formation were essential for morphogenesis in Struvea. Cortical microtubules were arranged parallel and longitudinally to the cell axis before SCD. When SCD was initiated, there was considerable undulation of the cortical microtubules and several transverse bundles appeared in the cytoplasmic zone where annular constrictions occurred. A microtubule‐disrupting drug (amiprophos methyl) inhibited SCD. Actin filaments maintained reticulate patterns before and during SCD. These results demonstrated that SCD in Struvea species was quite distinct from that in Dictyosphaeria cavernosa reported previously.  相似文献   

12.
Papenfussiella callitricha (Rosenv.) Kylin from eastern Canada was studied in culture. Zoids from unilocular sporangia develop into microscopic, filamentous, dioecious gametophytes which produce isogametes in filament cells and few-chambered plurilocular gametangia. Unfused gametes germinate to reproduce the gametophytes. Fusion takes place between a settled (“female”) and a motile (“male”) gamete. The zygote gives rise to a filamentous plethysmothallus that reproduces asexually by zoids formed in thallus cells and in few-chambered plurilocular zoidangia. Erect macrothalli are produced on the plethysmothallus, beginning with the formation of upright filaments. Later on, these filaments become the terminal assimilators of the macrothalli. Further assimilatory filaments, rhizoids, and unilocular sporangia are produced in a branching region at the base of the terminal assimilator. Zoids from unilocular sporangia formed in culture germinate to reestablish the gametophyte phase. Chromosome counts yielded n = 19 ± 3 for the gametophytes, and 32 ± 6 for the sporophyte, both plethysmothallus and macrothallus.  相似文献   

13.
Krischik VA  Denno RF 《Oecologia》1990,83(2):182-190
Summary Patterns of growth, reproduction, defense (leaf resin) and herbivory were compared between the sexes of the dioecious shrub Baccharis halimifolia (Compositae). Male plants possessed longer shoots and more tender leaves, grew faster, and flowered and senesced earlier than female plants. Levels of leaf nitrogen, water content, and acetone-soluble resin (shown to deter feeding by polyphagous insect herbivores) did not differ between male and female plants. When offered a choice between leaves from male and female plants, adults of two leaf beetles (Chrysomelidae), the monophagous Trirhabda bacharidis and the polyphagous Paria thoracica, both preferred to feed on male leaves. Similarly, the daily fecundity of older females of T. bacharidis was higher when they were fed leaves from male compared to female plants. However, adult survivorship and total fecundity of T. baccharidis did not differ between male and female leaf treatments. We attribute the feeding preference for and slight increase in fecundity on male plants to the tenderness of male leaves. Larvae of the fly Tephritis subpura (Tephritidae) fed exclusively in the sterile receptacle of male flower heads (85% infested), but the phenology was such that pollen production was not adversely affected. Larvae of two other flies Dasineura sp. and Contarinia sp. (Cecidomyiidae) occupied >95% of only female flower heads where they fed among and on the developing seeds. We conclude that foliage-feeding herbivores are unlikely candidates to explain the female-biased sex ratio (59% female) of B. halimifolia plants in the field, and that their preference for male plants is a result of plant characteristics (e.g. rapid growth) that have been selected by some other factor. However, our data on selective floral herbivory in B. halimifolia are in accord with the argument that dioecy reduces the inadvertent loss of flower parts of one sex when herbivores feed on flower parts of the opposite sex.  相似文献   

14.
The changes of cell surface carbohydrates were examined with FITC (fluorescein isothiocyanate)‐labeled lectins during the conjugation process of the green alga Zygnema cruciatum. The Ulex europaeus agglutinin (UEA)‐specific materials were detected consistently on the surface of vegetative cells, but were absent on the surface of protruding papillae or conjugation tube. The tips of male and female papillae were labeled with soybean agglutinin (SBA) and peanut agglutinin (PNA) during conjugation. The SBA‐ and PNA‐specific materials appeared first at the tip of male papillae and began to accumulate on the surface of female papillae. No labeling of these lectins was detected on the surface of vegetative filaments throughout the conjugation process. FITC‐ConA (Concanavalin A) and FITC‐RCA (Ricinus communis agglutinin) did not label the vegetative filaments of Z. cruciatum, but a trace labeling of these lectins was observed on the surface of some swollen papillae occasionally. Blocking experiments with various lectins showed that these SBA‐ and PNA‐specific glycoconjugates might be involved in the signaling between male and female papillae.  相似文献   

15.
Solieria chordalis (C. Agardh) J. Agardh and S. tenera (J. Agardh) Wynne et Taylor exhibit multiaxial growth from a cluster of four to eight obconical apical cells. A single periaxial cell is cut off from each axial cell and successive periaxial cells are rotated 120° in a zig-zag pattern along each axial filament. Periaxial cells produce branched, laterally diverging filaments which form the cortex. The medulla is composed of axial cells, elongate cells of lateral filaments, stretched interconnecting cells, and secondary rhizoids. The two species are nonprocarpic. Carpogonial branches are 3-celled, inwardly directed, with a reflexed trichogyne. The auxiliary cell together with associated darkly-staining inner cortical cells form an association, the auxiliary cell complex, that is recognizable prior to diploidization. A single, unbranched, non-septate connecting filament issues from the fertilized carpogonium and fuses with the inner, lateral side of an auxiliary cell. Production of an involucre from surrounding vegetative cells is stimulated and a gonimoblast initial is cut off toward the interior of the thallus which divides to form a compact cluster of gonimoblast cells. A fusion cell is produced through fusion of inner gonimoblast cells with the auxiliary cell that, in turn, fuses progressively with cells of the lateral file bearing the auxiliary cell. Mature cystocarps have terminal carposporangia cut off from gonimoblast cells at the periphery of the fusion cell and are surrounded by an involucre with a distinct ostiole. Tetrasporangia are cut off laterally from surface cortical cells which then cut off one or two additional derivatives toward the outside. A lectotype is designated for Solieria chordalis, but the lectotypification of S. tenera is questioned. We conclude that Solieria is closely related to Rhabdonia and place the Rhabdoniaceae in synonomy with the Solieriaceae.  相似文献   

16.
Nuclear DNA of meristematic, epidermal and root cap cells from the roots of three vascular plants—the cryptogam, Equisetum hyemale L, and the phanerogams, Tradescantia Clone 02 and Hordeum vulgare L.—was measured with quantitative Feulgen microspectrophotometry. Epidermal cells of all three species and root cap cells in both phanerogams contained up to 8fold the amount of nuclear DNA found in their respective meristematic telophase nuclei. In general, the large amounts of nuclear DNA parallel development and differentiation in the epidermis regardless of phylogeny, habitat, or degree of domestication. However, comparisons of the increase in nuclear DNA contents in the various epidermal cell types among these three species suggest that the mechanisms giving rise to these increases may differ phylogenetically and may represent another character in which cryptogams and phanerogams diverged in their evolution.  相似文献   

17.
罗汉果营养器官的结构   总被引:1,自引:1,他引:1  
1.罗汉果根、茎、叶的结构与葫芦科其它植物大致相似。不同之处有三方面:(1)叶子主脉中维管束为5个;(2)叶子中有硅质细胞成群分布;(3)块根具异常次生生长。在次生木质部中围绕导管形成形成层,由之分化出多个具韧皮部与木质部的小维管束。2.叶中的硅质细胞分布于表皮、栅栏组织、海绵组织中,多个细胞集合在一起。其细胞壁加厚并硅质化,细胞内容物消失。推测与增加叶子的支持力量有关。3.罗汉果雌株叶子上、下表皮气孔数之比为0.04,雄株为0.03,比值均很低,同时根据叶的解剖结构推测罗汉果为C_3植物。4.雌株叶子下表皮单位面积气孔数比雄株的多26%,差异很显著,值得进一步研究简化观察统计方法,以用于鉴别幼苗的性别。  相似文献   

18.
We have taken a mutational approach to identify genes important for male fertility in Arabidopsis thaliana and have isolated a number of nuclear male/ sterile mutants in which vegetative growth and female fertility are not altered. Here we describe detailed developmental analyses of four mutants, each of which defines a complementation group and has a distinct developmental end point. All four mutants represent premeiotic developmental lesions. In ms3, tapetum and middle layer hypertrophy result in the degeneration of microsporocytes. In ms4, microspore dyads persist for most of anther development as a result of impaired meiotic division. In ms5, degeneration occurs in all anther cells at an early stage of development. In ms15, both the tapetum and microsporocytes degenerate early in anther development. Each of these mutants had shorter filaments and a greater number of inflorescences than congenic male-fertile plants. The differences in the developmental phenotypes of these mutants, together with the non-allelic nature of the mutations indicate that four different genes important for pollen development, have been identified.  相似文献   

19.
Cystocarpic and spermatangial plants of rarely reported red alga Bonnemaisonia geniculata Gardner, epiphytic on Odonthalia Aoccosa (Esp.) Falk, were collected from june to September 1975 at shell Beach, california. Carpospores inoculated into unialgal culture divided, upon germination, in to two daughter cells, both of which formed erect and rhizoidal axes, Erect axes were uniseriale and alternately branched with a distictive zigzag pattern of axial cells. No tetrasporangia developed in culture. The presumptive tetrasporangia developed in culture to a described genus. Plants morphologically similar to those cultured from carpospores were found at the collection site; they bore tetrasporangia from February to june. Cullured letrasporews gave rise to male and female plants similar to those of field-collected B. geniculate in ca. a I:I ratio. Fertile female plants in the presence of male plants formed cystocarps. Carpospores gave rise to the alternately branched tetrasporophyte phase. Bonnemaisonia geniculate has a heteromorphic life history involving a previously undescribed tetrasporophyte.  相似文献   

20.
The life history of the red alga Ahnfeltiopsis paradoxa (Suringar) Masuda (Phyllophoraceae, Gigartinales) from Japan was completed in laboratory culture. Carpospores isolated from field-collected plants germinated to form circular crusts that were composed of a monostromatic hypothallium consisting of radiating filaments, a polystromatic perithallium consisting of tightly coalescent erect filaments, and hypobasal tissue derived from the hypothallium. The crusts were induced to sporulate by transferring them from short-day to long-day regimes at 15° and 2°C. Each crust produced several nemathecia along 1-4 concentric rings. Intercalary, cruciately or decussately divided tetrasporangia were formed in 4-6 (1-2 at the margin of the nemathecium) successive cells of a single filament of the nemathecia. Tetraspore germlings gave rise to basal discs from which upright axes developed. The upright axes first grew without branches or were sparsely branched and later bore many marginal reproductive proliferations. Procarps and spermatangia were formed in the proliferations on different individuals. Carposporophytes developed on female plants that were co-cultured with male plants. Gonimoblast filaments were formed from an auxiliary cell that fused with a carpogonium. Carposporangia developed from gonimoblast filaments and medullary cells contacted by the gonimoblast filaments. Carpospores were discharged through carpostomes formed in the thickened cortex. Tetraspores were cultured from field-collected crusts of a morphology similar to that of cultured tetrasporophytes. They gave rise to upright gametophytic axes similar in morphology to this species as seen in the field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号