首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Domain interactions between streptokinase and human plasminogen.   总被引:3,自引:0,他引:3  
J A Loy  X Lin  M Schenone  F J Castellino  X C Zhang  J Tang 《Biochemistry》2001,40(48):14686-14695
Plasmin (Pm), the main fibrinolytic protease in the plasma, is derived from its zymogen plasminogen (Plg) by cleavage of a peptide bond at Arg(561)-Val(562). Streptokinase (SK), a widely used thrombolytic agent, is an efficient activator of human Plg. Both are multiple-domain proteins that form a tight 1:1 complex. The Plg moiety gains catalytic activity, without peptide bond cleavage, allowing the complex to activate other Plg molecules to Pm by conventional proteolysis. We report here studies on the interactions between individual domains of the two proteins and their roles in Plg activation. Individually, all three SK domains activated native Plg. While the SK alpha domain was the most active, its activity was uniquely dependent on the presence of Pm. The SK gamma domain also induced the formation of an active site in Plg(R561A), a mutant that resists proteolytic activation. The alpha and gamma domains together yielded synergistic activity, both in Plg activation and in Plg(R561A) active site formation. However, the synergistic activity of the latter was dependent on the correct N-terminal isoleucine in the alpha domain. Binding studies using surface plasmon resonance indicated that all three domains of SK interact with the Plg catalytic domain and that the beta domain additionally interacts with Plg kringle 5. These results suggest mechanistic steps in SK-mediated Plg activation. In the case of free Plg, complex formation is initiated by the rapid and obligatory interaction between the SK beta domain and Plg kringle 5. After binding of all SK domains to the catalytic domain of Plg, the SK alpha and gamma domains cooperatively induce the formation of an active site within the Plg moiety of the activator complex. Substrate Plg is then recognized by the activator complex through interactions predominately mediated by the SK alpha domain.  相似文献   

3.
In this study, we showed that plasminogen (Plg) and plasmin (Pla) bind to lysine-binding sites on cell surface and trigger a signaling pathway that activates the mitogen-activated protein kinase (MAPK) MEK and ERK1/2, which in turn leads to the expression of the primary response genes c-fos and early growth response gene egr-1. Our data show that the Plg/Pla-stimulated steady-state mRNA levels of both genes reached a maximum by 30 min and then returned to basal levels by 1h. The gene induction was sensitive to both pharmacological and genetic inhibition of MEK. Leupeptin, a serine protease inhibitor, suppressed Pla but not Plg-induced c-fos and egr-1 expression, emphasizing the role played by the serine protease activity associated with Pla. Pre-incubation with cholera toxin completely blocked the Plg/Pla-induced gene expression, suggesting that another signaling pathway, which recruits G protein-coupled receptors, may also be involved. Furthermore, Plg/Pla also stimulated AP-1 and EGR-1 DNA-binding activities, which were abrogated by pharmacological inhibition of MEK. Altogether, these results suggest that Plg/Pla stimulates c-fos and egr-1 expression via activation of the MEK/ERK pathway.  相似文献   

4.
The characteristics of a streptococcal plasminogen activator (PA) displaying specificity for ruminant plasminogen (Plg) were defined using molecular approaches. The 16-kDa secreted protein PadA was found to be prevalent in Streptococcus dysgalactiae subspecies dysgalactiae isolated from cases of bovine mastitis and septic arthritis in lambs. PadA was able to activate bovine, ovine and caprine Plg, but not human Plg. Amino acid sequence analysis identified a limited level of homology to other streptococcal PAs, including streptokinase; however, PadA was found to align well with and match in size the staphylococcal PA, staphylokinase. Recombinant PadA was used to investigate interaction with bovine Plg, leading to formation of an activator complex that was capable of recruiting and converting further substrate Plg into plasmin. Individual non-overlapping peptides of PadA or bovine microplasminogen were found to block the interaction between PadA and bovine Plg, preventing the formation of the activation complex. Homology modelling based upon structures of staphylokinase complexed with human microplasminogen supported these findings by placing critical residues in close proximity to the plasmin component of the activation complex.  相似文献   

5.
Thrombospondin (TSP) is a multifunctional platelet alpha-granule and extracellular matrix glycoprotein that binds specifically to plasminogen (Plg) via that protein's lysine-binding site and modulates activation by tissue activator (TPA). In this study we report that the plasminogen activators, TPA and urokinase, greatly influence the binding of Plg to TSP. Using an enzyme-linked immunosorbent assay and a TSP-Sepharose affinity bead-binding assay we have found that Plg-TSP complex formation was markedly enhanced (up to 5-fold) when catalytic concentrations of Plg activators were included in the reaction mixtures. The enhancement was dependent upon the generation of small amounts of active plasmin and was duplicated by pretreatment of the immobilized TSP with plasmin prior to addition of the Plg. The enhancement effect was associated with selective proteolysis of the immobilized TSP. Purified Lys-Plg (the plasmin modified form of native Glu-Plg) bound to TSP to a greater extent than Glu-Plg, and binding of both forms was augmented by Plg activators. The apparent KD values of complex formation were unchanged in the presence of Plg activators suggesting that the enhancement effect was due to the generation of additional binding sites. The increased amount of bound Plg was demonstrated to result in a similar increase in the amount of plasmin generated from the complexes by TPA. Plg activators did not influence binding of Plg to histidine-rich glycoprotein or of histidine-rich glycoprotein to TSP, demonstrating specificity. In addition when TSP was treated with other proteases (human thrombin or human leukocyte elastase) no augmentation of Plg binding was seen. Thus, the initial production of small amounts of plasmin from Plg immobilized on TSP in fibrin-free microenvironments could generate a positive feedback loop by enzymatically modifying both TSP and Plg, resulting in an increase in TSP-Plg complex formation leading to the localized production of substantially more plasmin.  相似文献   

6.
The plasminogen activator, surface protease Pla, of the plague bacterium Yersinia pestis is an important virulence factor that enables the spread of Y. pestis from subcutaneous sites into circulation. Pla-expressing Y. pestis and recombinant Escherichia coli formed active plasmin in the presence of the major human plasmin inhibitor, alpha2-antiplasmin, and the bacteria were found to inactivate alpha2-antiplasmin. In contrast, only poor plasminogen activation and no cleavage of alpha2-antiplasmin was observed with recombinant bacteria expressing the homologous gene ompT from E. coli. A beta-barrel topology model for Pla and OmpT predicted 10 transmembrane beta-strands and five surface-exposed loops L1-L5. Hybrid Pla-OmpT proteins were created by substituting each of the loops between Pla and OmpT. Analysis of the hybrid molecules suggested a critical role of L3 and L4 in the substrate specificity of Pla towards plasminogen and alpha2-antiplasmin. Substitution analysis at 25 surface-located residues showed the importance of the conserved residues H101, H208, D84, D86, D206 and S99 for the proteolytic activity of Pla-expressing recombinant E. coli. The mature alpha-Pla of 292 amino acids was processed into beta-Pla by an autoprocessing cleavage at residue K262, and residues important for the self-recognition of Pla were identified. Prevention of autoprocessing of Pla, however, had no detectable effect on plasminogen activation or cleavage of alpha2-antiplasmin. Cleavage of alpha2-antiplasmin and plasminogen activation were influenced by residue R211 in L4 as well as by unidentified residues in L3. OmpT, which is not associated with invasive bacterial disease, was converted into a Pla-like protease by deleting residues D214 and P215, by substituting residue K217 for R217 in L4 of OmpT and also by substituting the entire L3 with that from Pla. This simple modification of the surface loops and the substrate specificity of OmpT exemplifies the evolution of a housekeeping protein into a virulence factor by subtle mutations at critical protein regions. We propose that inactivation of alpha2-antiplasmin by Pla of Y. pestis promotes uncontrolled proteolysis and contributes to the invasive character of plague.  相似文献   

7.
Omptins constitute a unique family of outer membrane proteases that are widespread in Enterobacteriaceae. The plasminogen activator (Pla) of Yersinia pestis is an omptin family member that is very important for development of both bubonic and pneumonic plague. The physiological function of Pla is to cleave (activate) human plasminogen to form the plasma protease plasmin. Uniquely, lipopolysaccharide (LPS) is essential for the catalytic activity of all omptins, including Pla. Why omptins require LPS for enzymatic activity is unknown. Here, we report the co-crystal structure of LPS-free Pla in complex with the activation loop peptide of human plasminogen, its natural substrate. The structure shows that in the absence of LPS, the peptide substrate binds deep within the active site groove and displaces the nucleophilic water molecule, providing an explanation for the dependence of omptins on LPS for enzymatic activity.  相似文献   

8.
The initiation of coagulation results from the activation of factor X by an enzyme complex (Xase) composed of the trypsin-like serine proteinase, factor VIIa, bound to tissue factor (TF) on phospholipid membranes. We have investigated the basis for the protein substrate specificity of Xase using TF reconstituted into vesicles of phosphatidylcholine, phosphatidylserine, or pure phosphatidylcholine. We show that occupation of the active site of VIIa within Xase by a reversible inhibitor or an alternate peptidyl substrate is sufficient to exclude substrate interactions at the active site but does not alter the affinity of Xase for factor X. This is evident as classical competitive inhibition of peptidyl substrate cleavage but as classical noncompetitive inhibition of factor X activation by active site-directed ligands. This implies that the productive recognition of factor X by Xase arises from a multistep reaction requiring an initial interaction at sites on the enzyme complex distinct from the active site (exosites), followed by active site interactions and bond cleavage. Exosite interactions determine protein substrate affinity, whereas the second binding step influences the maximum catalytic rate for the reaction. We also show that competitive inhibition can be achieved by interfering with exosite binding using factor X derivatives that are expected to have limited or abrogated interactions with the active site of VIIa within Xase. Thus, substrate interactions at exosites, sites removed from the active site of VIIa within the enzyme complex, determine affinity and binding specificity in the productive recognition of factor X by the VIIa-TF complex. This may represent a prevalent strategy through which distinctive protein substrate specificities are achieved by the homologous enzymes of coagulation.  相似文献   

9.
Human apolipoprotein(a) (apo(a)), synthesized in the liver, contains oxidized phosphatidylcholine (oxPtdPC) adducts probably generated at the hepatic site. Since plasminogen (Plg), also synthesized in the liver, is genetically related and structurally homologous to apo(a), we wanted to determine whether it contains oxPtdPCs and their location. We used Plg isolated from fresh or frozen normal human plasma and several commercial preparations. Some were freed of non-covalently bound lipids by organic solvent extraction. By immunoblot analyses, all products reacted against T15, a natural IgM monoclonal antibody specific for phosphorylcholine -containing oxidized phospholipids (ox-PLs). This immunoreactivity was retained in urokinase type plasminogen activator -generated plasmin and was abrogated in Plg previously digested with lipoprotein-associated phospholipase A2 (Lp-PLA2), a reaction that generated predominantly C16:0 lysophosphatidylcholine species as determined by mass spectrometry. Lyso derivatives were also generated upon the cleavage by Lp-PLA2 of a model ox-PL chemically linked to a lysine-containing pentapeptide. From inorganic phosphorous analyses, we found 2 mol of oxPtdPC/mole of Plg distributed between the kringles 1–4 and mini-Plg domain. OxPtdPCs were also present in the Plg isolated from the serum-free medium of cultured human HepG2 cells. In conclusion, our results provide strong evidence that naturally occurring Plg contains oxPtdPC probably linked by a Schiff base and also suggest that the linkage occurs at the hepatic site. Given the emerging evidence for the cardiovascular pathogenicity of oxPtdPCs, we speculate that they may impart athero-thrombogenic properties to Plg under inflammatory conditions.  相似文献   

10.
Streptococcus agalactiae (Group B Streptococcus or GBS) is a leading cause of invasive infections in neonates whose virulence is dependent on its ability to interact with cells and host components. We here characterized a surface protein with a critical function in GBS pathophysiology. This adhesin, designated PbsP, possesses two Streptococcal Surface Repeat domains, a methionine and lysine‐rich region, and a LPXTG cell wall‐anchoring motif. PbsP mediates plasminogen (Plg) binding both in vitro and in vivo and we showed that cell surface‐bound Plg can be activated into plasmin by tissue plasminogen activator to increase the bacterial extracellular proteolytic activity. Absence of PbsP results in a decreased bacterial transmigration across brain endothelial cells and impaired virulence in a murine model of infection. PbsP is conserved among the main GBS lineages and is a major plasminogen adhesin in non‐CC17 GBS strains. Importantly, immunization of mice with recombinant PbsP confers protective immunity. Our results indicate that GBS have evolved different strategies to recruit Plg which indicates that the ability to acquire cell surface proteolytic activity is essential for the invasiveness of this bacterium.  相似文献   

11.
Molecular Dynamics (MD) simulations were carried out for human acetylcholinesterase (hAChE) and its complex with Axillaridine–A, in order to dynamically explore the active site of the protein and the behaviour of the ligand at the peripheral binding site. Simulation of the enzyme alone showed that the active site of AChE is located at the bottom of a deep and narrow cavity whose surface is lined with rings of aromatic residues while Tyr72 is almost perpendicular to the Trp286, which is responsible for stable π -π interactions. The complexation of AChE with Axillaridine-A, results in the reduction of gorge size due to interaction between the ligand and the active site residues. The gorge size was determined by the distance between the center of mass of Glu81 and Trp286. As far as the geometry of the active site is concerned, the presence of ligand in the active site alters its specific conformation, as revealed by stable hydrogen bondings established between amino acids. With the increasing interaction between ligand and the active amino acids, size of the active site of the complex decreases with respect to time. Axillaridine-A, forms stable π -π interactions with the aromatic ring of Tyr124 that results in inhibition of catalytic activity of the enzyme. This π -π interaction keeps the substrate stable at the edge of the catalytic gorge by inhibiting its catalytic activity. The MD results clearly provide an explanation for the binding pattern of bulky steroidal alkaloids at the active site of AChE.  相似文献   

12.
13.
The serine proteinases plasmin and thrombin convert proenzyme matrix metalloproteinases (MMPs) into catalytically active forms. In addition, we demonstrate that plasmin(ogen) and thrombin induce a significant increase in secretion of activated murine macrophage elastase (MMP-12) protein. Active serine protease is responsible for induction, as demonstrated by the absence of MMP-12 induction in plasminogen(Plg)-treated urokinase-type plasminogen activator-deficient macrophages. Since increased MMP-12 protein secretion was not accompanied by an increase in MMP-12 mRNA, we examined post-translational mechanisms. Protein synthesis was not required for early release of MMP-12 but was required for later secretion of activated enzyme. Immunofluorescent microscopy demonstrated basal expression in macrophages that increased following serine proteinase exposure. Inhibition of MMP-12 secretion by hirudin and pertussis toxin demonstrated a role for the thrombin G protein-coupled receptor (protease-activated receptor 1 (PAR-1)). PAR-1-activating peptides were able to induce MMP-12 release. Investigation of signal transduction pathways involved in this response demonstrate the requirement for protein kinase C, but not tyrosine kinase, activity. These data demonstrate that plasmin and thrombin regulate MMP-12 activity through distinct mechanisms: post-translational secretion of preformed MMP-12 protein, induction of protein secretion that is protein kinase C-mediated, and extracellular enzyme activation. Most importantly, we show that serine proteinase MMP-12 regulation in macrophages occurs via the protein kinase C-activating G protein-coupled receptor PAR-1.  相似文献   

14.
V(D)J recombination is initiated by double-strand cleavage at recombination signal sequences (RSSs). DNA cleavage is mediated by the RAG1 and RAG2 proteins. Recent experiments describing RAG protein-RSS complexes, while defining the interaction of RAG1 with the nonamer, have not assigned contacts immediately adjacent to the site of DNA cleavage to either RAG polypeptide. Here we use UV cross-linking to define sequence- and site-specific interactions between RAG1 protein and both the heptamer element of the RSS and the coding flank DNA. Hence, RAG1-DNA contacts span the site of cleavage. We also detect cross-linking of RAG2 protein to some of the same nucleotides that cross-link to RAG1, indicating that, in the binding complex, both RAG proteins are in close proximity to the site of cleavage. These results suggest how the heptamer element, the recognition surface essential for DNA cleavage, is recognized by the RAG proteins and have implications for the stoichiometry and active site organization of the RAG1-RAG2-RSS complex.  相似文献   

15.
Cholera toxin (CT) is an AB5 protein complex secreted by the pathogen Vibrio cholera, which is responsible for cholera infection. N-acetylneuraminic acid (NeuNAc) is a derivative of neuraminic acid with nine-carbon backbone. NeuNAc is distributed on the cell surface mainly located in the terminal components of glycoconjugates, and also plays an important role in cell–cell interaction. In our current study, molecular docking and molecular dynamic (MD) simulations were implemented to identify the potent NeuNAc analogs with high-inhibitory activity against CT protein. Thirty-four NeuNAc analogs, modified in different positions C-1/C-2/C-4/C-5/C-7/C-8/C-9, were modeled and docked against the active site of CT protein. Among the 34 NeuNAc analogs, the analog Neu5Gc shows the least extra precision glide score of ?9.52 and glide energy of ?44.71?kcal/mol. NeuNAc analogs block the CT active site residues HIS:13, ASN:90, LYS:91, GLN:56, GLN:61, and TRP:88 through intermolecular hydrogen bonding. The MD simulation for CT-Neu5Gc docking complex was performed using Desmond. MD simulation of CT-Neu5Gc complex reveals the stable nature of docking interaction.  相似文献   

16.
Binding and activation of human plasminogen (Plg) to generate the proteolytic enzyme plasmin (Plm) have been associated with the invasive potential of certain bacteria. In this work, proteomic analysis together with ligand blotting assays identified several major Plg-binding spots in Mycobacterium tuberculosis soluble extracts (SEs) and culture filtrate proteins. The identity of 15 different proteins was deduced by N-terminal and/or MS and corresponded to DnaK, GroES, GlnA1, Ag85 complex, Mpt51, Mpt64, PrcB, MetK, SahH, Lpd, Icl, Fba, and EF-Tu. Binding of Plg to recombinant M. tuberculosis DnaK, GlnA1, and Ag85B was further confirmed by ELISA and ligand blotting assays. The binding was inhibited by epsilon-aminocaproic acid, indicating that the interaction involved lysine residues. Plg bound to recombinant mycobacterial proteins was activated to Plm by tissue-type Plg activator. In contrast with recombinant proteins, M. tuberculosis SE enhanced several times the Plg activation mediated by the activator. Interestingly, GlnA1 was able to bind the extracellular matrix (ECM) protein fibronectin. Together these results show that M. tuberculosis posses several Plg receptors suggesting that bound Plg to bacteria surface, can be activated to Plm, endowing bacteria with the ability to break down ECM and basal membranes proteins contributing to tissue injury in tuberculosis.  相似文献   

17.
Fibrinolysis is important in cell migration and tightly regulated by specific inhibitors and activators; of the latter, urokinase (uPA) associates with enhancement of cell migration. Active uPA is formed through cleavage of the single‐chain uPA (scuPA). The Salmonella enterica strain 14028R cleaved human scuPA at the peptide bond Lys158‐Ile159, the site cleaved also by the physiological activator human plasmin. The cleavage led to activation of scuPA, while no cleavage or activation were detected with the mutant strain 14028R lacking the omptin protease PgtE. Complementation and expression studies confirmed the role of PgtE in scuPA activation. Similar cleavage and activation of scuPA were detected with recombinant Escherichia coli expressing the omptin genes pla from Yersinia pestis, ompT and ompP from E. coli, sopA from Shigella flexneri, and leo from Legionella pneumophila. For these omptins the activation of scuPA is the only shared function so far detected. Only poor cleavage and activation of scuPA were seen with YcoA of Y. pestis and YcoB of Yersinia pseudotuberculosis that are considered to be proteolytically inactive omptin variants. Point mutations of active site residues in Pla and PgtE had different effects on the proteolysis of plasminogen and of scuPA, indicating versatility in omptin proteolysis.  相似文献   

18.
The X-ray structure of lysozyme from bacteriophage lambda (λ lysozyme) in complex with the inhibitor hexa-N-acetylchitohexaose (NAG6) (PDB: 3D3D) has been reported previously showing sugar units from two molecules of NAG6 bound in the active site. One NAG6 is bound with four sugar units in the ABCD sites and the other with two sugar units in the E′F′ sites potentially representing the cleavage reaction products; each NAG6 cross links two neighboring λ lysozyme molecules. Here we use NMR and MD simulations to study the interaction of λ lysozyme with the inhibitors NAG4 and NAG6 in solution. This allows us to study the interactions within the complex prior to cleavage of the polysaccharide. 1HN and 15N chemical shifts of λ lysozyme resonances were followed during NAG4/NAG6 titrations. The chemical shift changes were similar in the two titrations, consistent with sugars binding to the cleft between the upper and lower domains; the NMR data show no evidence for simultaneous binding of a NAG6 to two λ lysozyme molecules. Six 150 ns MD simulations of λ lysozyme in complex with NAG4 or NAG6 were performed starting from different conformations. The simulations with both NAG4 and NAG6 show stable binding of sugars across the D/E active site providing low energy models for the enzyme-inhibitor complexes. The MD simulations identify different binding subsites for the 5th and 6th sugars consistent with the NMR data. The structural information gained from the NMR experiments and MD simulations have been used to model the enzyme-peptidoglycan complex.  相似文献   

19.
Tyrosinase (EC 1.14.18.1) is a diversely distributed enzyme in various organisms with physiological roles related to pigment production. Tyrosinase has gained the attention of researchers due to its biological functions and potential applications. In this regard, studies on the partner proteins of tyrosinase are important. In this study, we predicted the 3D structure of human tyrosinase and simulated the protein–protein interactions between tyrosinase and binding partners by using the PEIMAP algorithm. As a result, we found that tyrosinase is predicted to bind with G protein-related proteins, potassium voltage-gated channel-related proteins, and vesicle/sorting-related proteins. In particular, GIPC1, GIPC2, GIPC3, TYRP1, and DCT were predicted to primarily bind with tyrosinase. Interacting proteins (103) were secondarily bound to these 5 interacting proteins in the PEIMAP network of tyrosinase. An involvement in melanogenesis was also newly predicted by associating the predicted binding proteins. We simulated the protein–protein bindings by probing the residues of each complex facing toward the predicted site of interaction with tyrosinase. Among the interacting residues, some were predicted to dock to the active site of tyrosinase, which could affect its activity directly. Our computational predictions will be useful for elucidating the protein–protein interactions of tyrosinase and for studying its binding mechanisms and the melanin biosynthesis pathway.  相似文献   

20.
We have used a group of human microplasminogens (mPlg), modified by residue substitutions, insertions, deletions, and chain breaks (1) to study the determinants of productive interactions with two plasminogen activators, urokinase (uPA), and streptokinase (SK); (2) to explore the basis of species specificity in the zymogen-SK complex activity; and (3) to compare active SK complex formation in mPlg and microplasmin (mPlm). Modifications within the disulfide-bonded loop containing the activation site and the adjacent hexadecapeptide upstream sequence showed that uPA recognition elements encompassed R29 at the activation site and multiple elements extending upstream to perhaps 13 residues, all maintained in specific conformational register by surrounding pairs of disulfide bonds. A generally parallel pattern of structural requirements was observed for active zymogen-SK complex formation. Changes within the loop downstream of the activation site were tolerated well by uPA and poorly by SK. The introduction of selected short bovine (Plg) sequences in human mPlg reduced the activity of the resulting SK complexes. The requirements for active SK complex formation are different for mPlg and mPlm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号