首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aspartate-semialdehyde dehydrogenase (ASADH; EC 1.2.1.11) is a key enzyme in the biosynthesis of essential amino acids in prokaryotes and fungi, inhibition of ASADH leads to the development of novel antitubercular agents. In the present work, a combined structure and ligand-based pharmacophore modeling, molecular docking, and molecular dynamics (MD) approaches were employed to identify potent inhibitors of mycobacterium tuberculosis (Mtb)-ASADH. The structure-based pharmacophore hypothesis consists of three hydrogen bond acceptor (HBA), two negatively ionizable, and one positively ionizable center, while ligand-based pharmacophore consists of additional one HBA and one hydrogen bond donor features. The validated pharmacophore models were used to screen the chemical databases (ZINC and NCI). The screened hits were subjected to ADME and toxicity filters, and subsequently to the molecular docking analysis. Best-docked 25 compounds carry the characteristics of highly electronegative functional groups (–COOH and –NO2) on both sides and exhibited the H-bonding interactions with highly conserved residues Arg99, Arg249, and His256. For further validation of docking results, MD simulation studies were carried out on two representative compounds NSC51108 and ZINC04203124. Both the compounds remain bound to the key active residues of Mtb-ASADH during the MD simulations. These identified hits can be further used for lead optimization and in the design more potent inhibitors against Mtb-ASADH.  相似文献   

2.
MurG (Rv2153c) is a key player in the biosynthesis of the peptidoglycan layer in Mycobacterium tuberculosis (Mtb). This work is an attempt to highlight the structural and functional relationship of Mtb MurG, the three-dimensional (3D) structure of protein was constructed by homology modelling using Discovery Studio 3.5 software. The quality and consistency of generated model was assessed by PROCHECK, ProSA and ERRAT. Later, the model was optimized by molecular dynamics (MD) simulations and the optimized model complex with substrate Uridine-diphosphate-N-acetylglucosamine (UD1) facilitated us to employ structure-based virtual screening approach to obtain new hits from Asinex database using energy-optimized pharmacophore modelling (e-pharmacophore). The pharmacophore model was validated using enrichment calculations, and finally, validated model was employed for high-throughput virtual screening and molecular docking to identify novel Mtb MurG inhibitors. This study led to the identification of 10 potential compounds with good fitness, docking score, which make important interactions with the protein active site. The 25 ns MD simulations of three potential lead compounds with protein confirmed that the structure was stable and make several non-bonding interactions with amino acids, such as Leu290, Met310 and Asn167. Hence, we concluded that the identified compounds may act as new leads for the design of Mtb MurG inhibitors.  相似文献   

3.
Persistent infection by Mycobacterium tuberculosis requires the glyoxylate shunt. This is a bypass to the tricarboxylic acid cycle in which isocitrate lyase (ICL) and malate synthase (MS) catalyze the net incorporation of carbon during mycobacterial growth on acetate or fatty acids as the primary carbon source. To identify a potential antitubercular compound, we performed a structure-based screening of natural compounds from the ZINC database (n = 1 67 740) against the M tuberculosis MS (MtbMS) structure. The ligands were screened against MtbMS, and 354 ligands were found to have better docking score. These compounds were assessed for Lipinski and absorption, distribution, metabolism, excretion, and toxicity prediction where 15 compounds were found to fit well for redocking studies. After refinement by molecular docking and drug-likeness analysis, four potential inhibitors (ZINC1483899, ZINC1754310, ZINC2269664, and ZINC15729522) were identified. These four ligands with phenyl-diketo acid were further subjected to molecular dynamics simulation to compare the dynamics and stability of the protein structure after ligand binding. The binding energy analysis was calculated to determine the intermolecular interactions. Our results suggested that the four compounds had a binding free energy of −201.96, −242.02, −187.03, and −169.02 kJ·mol−1, for compounds with IDs ZINC1483899, ZINC1754310, ZINC2269664, and ZINC15729522, respectively. We concluded that two compounds (ZINC1483899 and ZINC1754310) displayed considerable structural and pharmacological properties and could be probable drug candidates to fight against M tuberculosis parasites.  相似文献   

4.
Filamentous temperature-sensitive protein Z (FtsZ), playing a key role in bacterial cell division, is regarded as a promising target for the design of antimicrobial agent. This study is looking for potential high-efficiency FtsZ inhibitors. Ligand-based pharmacophore and E-pharmacophore, virtual screening and molecular docking were used to detect promising FtsZ inhibitors, and molecular dynamics simulation was used to study the stability of protein-ligand complexes in this paper. Sixty-three inhibitors from published literatures with pIC50 ranging from 2.483 to 5.678 were collected to develop ligand-based pharmacophore model. 4DXD bound with 9PC was selected to develop the E-pharmacophore model. The pharmacophore models validated by test set method and decoy set were employed for virtual screening to exclude inactive compounds against ZINC database. After molecular docking, ADME analysis, IFD docking and MM-GBSA, 8 hits were identified as potent FtsZ inhibitors. A 50?ns molecular dynamics simulation was implemented on the compounds to assess the stability between potent inhibitors and FtsZ. The results indicated that the candidate compounds had a high docking score and were strongly combined with FtsZ by forming hydrogen bonding interactions with key amino acid residues, and van der Waals forces and hydrophobic interactions had significant contribution to the stability of the binding. Molecular dynamics simulation results showed that the protein-ligand compounds performed well in both the stability and flexibility of the simulation process.  相似文献   

5.
Opisthorchis felineus is the etiological agent of opisthorchiasis in humans. O. felineus cytochrome P450 (OfCYP450) is an important enzyme in the parasite xenobiotic metabolism. To identify the potential anti-opisthorchid compound, we conducted a structure-based virtual screening of natural compounds from the ZINC database (n = 1,65,869) against the OfCYP450. The ligands were screened against OfCYP450 in four sequential docking modes that resulted in 361 ligands having better docking score. These compounds were evaluated for Lipinski and ADMET prediction, and 10 compounds were found to fit well with re-docking studies. After refinement by docking and drug-likeness analyses, four potential inhibitors (ZINC2358298, ZINC8790946, ZINC70707116, and ZINC85878789) were identified. These ligands with reference compounds (itraconazole and fluconazole) were further subjected to molecular dynamics simulation (MDS) and binding energy analyses to compare the dynamic structure of protein after ligand binding and the stability of the OfCYP450 and bound complexes. The binding energy analyses were also calculated. The results suggested that the compounds had a negative binding energy with ?259.41, ?110.09, ?188.25, ?163.30, ?202.10, and ?158.79 kJ mol?1 for itraconazole, fluconazole, and compounds with IDs ZINC2358298, ZINC8790946, ZINC70707116, and ZINC85878789, respectively. These lead compounds displayed significant pharmacological and structural properties to be drug candidates. On the basis of MDS results and binding energy analyses, we concluded that ZINC8790946, ZINC70707116, and ZINC85878789 have excellent potential to inhibit OfCYP450.  相似文献   

6.
7.
Fasciola gigantica is the causative organism of fascioliasis and is responsible for major economic losses in livestock production globally. F. gigantica thioredoxin1 (FgTrx1) is an important redox-active enzyme involved in maintaining the redox homeostasis in the cell. To identify a potential anti-fasciolid compound, we conducted a structure-based virtual screening of natural compounds from the ZINC database (n = 1,67,740) against the FgTrx1 structure. The ligands were docked against FgTrx1 and 309 ligands were found to have better docking score. These compounds were evaluated for Lipinski and ADMET prediction, and 30 compounds were found to fit well for re-docking studies. After refinement by molecular docking and drug-likeness analysis, three potential inhibitors (ZINC15970091, ZINC9312362, and ZINC9312661) were identified. These three ligands were further subjected to molecular dynamics simulation (MDS) to compare the dynamics and stability of the protein structure after binding of the ligands. The binding free energy analyses were calculated to determine the intermolecular interactions. The results suggested that the two compounds had a binding free energy of –82.237, and –109.52 kJ.mol?1 for compounds with IDs ZINC9312362 and ZINC9312661, respectively. These predicted compounds displayed considerable pharmacological and structural properties to be drug candidates. We concluded that these two compounds could be potential drug candidates to fight against F. gigantica parasites.  相似文献   

8.
A four-feature 3D-pharmacophore model was built from a set of 24 compounds whose activities were reported against the V1/S strain of the Plasmodium falciparum dihydrofolate reductase (PfDHFR) enzyme. This is an enzyme harboring Asn51Ile + Cys59Arg + Ser108Asn + Ile164Leu mutations. The HipHop module of the Catalyst program was used to generate the model. Selection of the best model among the 10 hypotheses generated by HipHop was carried out based on rank and best-fit values or alignments of the training set compounds onto a particular hypothesis. The best model (hypo1) consisted of two H-bond donors, one hydrophobic aromatic, and one hydrophobic aliphatic features. Hypo1 was used as a query to virtually screen Maybridge2004 and NCI2000 databases. The hits obtained from the search were subsequently subjected to FlexX and Glide docking studies. Based on the binding scores and interactions in the active site of quadruple-mutant PfDHFR, a set of nine hits were identified as potential inhibitors.  相似文献   

9.
Acetyl-CoA carboxylase (ACC) enzyme plays an important role in the regulation of biosynthesis and oxidation of fatty acids. ACC is a recognized drug target for the treatment of obesity and diabetes. Combination of ligand and structure-based in silico methods along with activity and toxicity prediction provides best lead compounds in the drug discovery process. In this study, a data-set of 100 ACC inhibitors were used for the development of comparative molecular field analysis (CoMFA) and comparative molecular similarity index matrix analysis (CoMSIA) models. The generated contour maps were used for the design of novel ACC inhibitors. CoMFA and CoMSIA models were used for the predication of activity of designed compounds. In silico toxicity risk prediction study was carried out for the designed compounds. Molecular docking and dynamic simulations studies were performed to know the binding mode of designed compounds with the ACC enzyme. The designed compounds showed interactions with key amino acid residues important for catalysis, and good correlation was observed between binding free energy and inhibition of ACC.  相似文献   

10.
NS2B–NS3 protease has been identified to serve as lead drug design target due to its significant role in West Nile viral (WNV) and dengue virus (DENV) reproduction and replication. There are currently no approved chemotherapeutic drugs and effective vaccines to inhibit DENV and WNV infections. In this work, 3D-QSAR pharmacophore model has been developed to discover potential inhibitory candidates. Validation through Fischer’s model and decoy test indicate that the developed 3D pharmacophore model is highly predictive for DENV inhibitors, which was then employed to screen ZINC chemical library to obtain reasonable hits. Following ADMET filtering, 15 hits were subjected to further filter through molecular docking and CoMFA modeling. Finally, top three hits were identified as lead compounds or potential inhibitory candidates with IC50 values of ~0.4637?µM and fitness of ~57.73. It is implied from CoMFA modeling that substituents at the side site of benzotriazole such as a p-nitro group (e.g. biphenyl head) and a carbonyl (e.g. carboxylate function) at the side site of furan or amino group may improve bioactivity of ZINC85645245, respectively. Molecular dynamics simulations (MDS) were performed to discover new interactions and reinforce the binding modes from docking for the hits also. The QSAR and MDS results obtained from this work should be useful in determining structural requirements for inhibitor development as well as in designing more potential inhibitors for NS2B–NS3 protease.  相似文献   

11.
Abstract

Klebsiella pneumoniae (K. pneumoniae) is a Gram-negative bacterium, which is a leading causal agent for nosocomial infections. Penicillin, cephalosporin and carbapenems along with the inhibitors such as tazobactam, sulbactam and clavulanic acid are prescribed for the treatment of K. pneumoniae infections. Prolonged exposure to β-lactam antibiotics leads to the development of resistance. The major reason for the β-lactam resistance in K. pneumoniae is the secretion of the enzyme K. pneumoniae carbapenemase (KPC). Secretion of KPC-2 and its variant KPC-3 by the K. pneumoniae strains causes resistance to both the substrate imipenem and the β-lactamase inhibitors. Hence, molecular docking and dynamics studies were carried out to analyze the resistance mechanism of KPC-2–imipenem and KPC-3–imipenem at the structural level. It reveals that KPC-3-imipenem has the highest c-score value of 4.03 with greater stability than the KPC-2–imipenem c-score value of 2.36. Greater the interaction between the substrate and the β-lactamase enzyme, higher the chances of hydrolysis of the substrate. Presently available β-lactamase inhibitors are also ineffective against KPC-3-expressing strains. This situation necessitates the need for development of novel and effective inhibitors for KPC-3. We have carried out the virtual screening process to identify more effective inhibitors for KPC-3, and this has resulted in ZINC48682523, ZINC50209041 and ZINC50420049 as the best binding energy compounds, having greater binding affinity and stability than KPC-3–tazobactam interactions. Our study provides a clear understanding of the mechanism of drug resistance and provides valuable inputs for the development of inhibitors against KPC-3 expressing K. pneumoniae.

Communicated by Ramaswamy H. Sarma  相似文献   

12.
We have used docking (GLIDE), pharmacophore modeling (Discovery Studio), long trajectory molecular dynamics (Discovery Studio) and ADMET/Tox (QikProp and DEREK) to investigate PAD4 in order to determine potential novel inhibitors and hits. We have carried out virtual screening in the ZINC natural compounds database. Pharmacokinetics and Toxicity of the best hits were assessed using databases implemented in softwares that create models based on chemical structures taking into account consideration about the toxicophoric groups. A wide variety of pharmaceutical relevant properties are determined in order to make decisions about molecular suitability. After screening and analysis, the 6 most promising PAD4 inhibitors are suggested, with strong interactions (pi-stacking, hydrogen bonds, hydrophobic contacts) and suitable pharmacotherapeutic profile as well.  相似文献   

13.
The inhibition of the enzyme acetylcholinesterase (AChE) increases the levels of the neurotransmitter acetylcholine and symptomatically improves the affected cognitive function. In the present study, we searched for novel AChE inhibitors by docking-based virtual screening of the standard lead-like set of ZINC database containing more than 6 million small molecules using GOLD software. The top 10 best-scored hits were tested in vitro for AChE affinity, neurotoxicity, GIT and BBB permeability. The main pharmacokinetic parameters like volume of distribution, free fraction in plasma, total clearance, and half-life were predicted by previously derived models. Nine of the compounds bind to the enzyme with affinities from 0.517 to 0.735?µM, eight of them are non-toxic. All hits permeate GIT and BBB and bind extensively to plasma proteins. Most of them are low-clearance compounds. In total, seven of the 10 hits are promising for further lead optimisation. These are structures with ZINC IDs: 00220177, 44455618, 66142300, 71804814, 72065926, 96007907, and 97159977.  相似文献   

14.
WbpP encoding UDP-GlcNAC C4 epimerase is responsible for the activation of virulence factor in marine pathogen Vibrio vulnificus (V. vulnificus) and it is linked to many aquatic diseases, thus making it a potential therapeutic target. There are few reported compounds that include several natural products and synthetic compounds targeting Vibrio sp, but specific inhibitor targeting WbpP are unavailable. Here, we performed structure-based virtual screening using chemical libraries such as Binding, TOSLab and Maybridge to identify small molecule inhibitors of WbpP with better drug-like properties. Deficient structural information forced to model the structure and the stable protein structure was obtained through 30?ns of MD simulations. Druggability regions are focused for new lead compounds and our screening protocol provides fast docking of entire small molecule library with screening criteria of ADME/Lipinski filter/Docking followed by re-docking of top hits using a method that incorporates both ligand and protein flexibility. Docking conformations of lead molecules interface displays strong H-bond interactions with the key residues Gly101, Ser102, Val195, Tyr165, Arg298, Val209, Ser142, Arg233 and Gln200. Subsequently, the top-ranking compounds were prioritized using the molecular dynamics simulation-based conformation and stability studies. Our study suggests that the proposed compounds may aid as a starting point for the rational design of novel therapeutic agents.  相似文献   

15.
Aspartyl β-semialdehyde dehydrogenase (ASADH) is an important enzyme, occupying the first branch position of the biosynthetic pathway of the aspartate family of amino acids in bacteria, fungi and higher plants. It catalyses reversible dephosphorylation of l-β-aspartyl phosphate (βAP) to l-aspartate-β-semialdehyde (ASA), a key intermediate in the biosynthesis of diaminopimelic acid (DAP)—an essential component of cross linkages in bacterial cell walls. Since the aspartate pathway is unique to plants and bacteria, and ASADH is the key enzyme in this pathway, it becomes an attractive target for antimicrobial agent development. Therefore, with the objective of deducing comparative structural models, we have described a molecular model emphasizing the uniqueness of ASADH from Mycobacterium tuberculosis (H37Rv) that should generate insights into the structural distinctiveness of this protein as compared to structurally resolved ASADH from other bacterial species. We find that mtASADH exhibits structural features common to bacterial ASADH, while other structural motifs are not present. Structural analysis of various domains in mtASADH reveals structural conservation among all bacterial ASADH proteins. The results suggest that the probable mechanism of action of the mtASADH enzyme might be same as that of other bacterial ASADH. Analysis of the structure of mtASADH will shed light on its mechanism of action and may help in designing suitable antagonists against this enzyme that could control the growth of Mycobacterium tuberculosis. Anupama Singh and Hemant R. Kushwaha contributed equally to this work.  相似文献   

16.
17.
Mycobacterium tuberculosis is the etiological agent of tuberculosis in humans and is responsible for more than two million deaths annually. M. tuberculosis isocitrate lyase (MtbICL) catalyzes the first step in the glyoxylate cycle, plays a pivotal role in the persistence of M. tuberculosis, which acts as a potential target for an anti-tubercular drug. To identify the potential anti-tuberculosis compound, we conducted a structure-based virtual screening of natural compounds from the ZINC database (n = 1,67,748) against the MtbICL structure. The ligands were docked against MtbICL in three sequential docking modes that resulted in 340 ligands having better docking score. These compounds were evaluated for Lipinski and ADMET prediction, and 27 compounds were found to fit well with re-docking studies. After refinement by molecular docking and drug-likeness analyses, three potential inhibitors (ZINC1306071, ZINC2111081, and ZINC2134917) were identified. These three ligands and the reference compounds were further subjected to molecular dynamics simulation and binding energy analyses to compare the dynamic structure of protein after ligand binding and the stability of the MtbICL and bound complexes. The binding free energy analyses were calculated to validate and capture the intermolecular interactions. The results suggested that the three compounds had a negative binding energy with ?96.462, ?143.549, and ?122.526 kJ mol?1 for compounds with IDs ZINC1306071, ZINC2111081, and ZINC2134917, respectively. These lead compounds displayed substantial pharmacological and structural properties to be drug candidates. We concluded that ZINC2111081 has a great potential to inhibit MtbICL and would add to the drug discovery process against tuberculosis.  相似文献   

18.
A series of compounds was synthesized and characterized to explore new antimicrobial agents. These compounds were evaluated by using the agar cup plate method. The most active compound exhibited a zone of inhibition 18±0.09 mm and 19±0.09 mm against E. Coli and S. aureus, respectively. To gain insights into the intermolecular interactions, molecular docking studies were performed at the active site of the glucosamine fructose 6 phosphate synthase (GlcN 6 p) enzyme (PDB Id: 1XFF). The results of the molecular docking studies are in agreement with the pharmacological evaluation with potent compounds, exhibiting docking scores of −11.2. However, deformability, B-factor and covariance computations showed a result that the most active compound favored molecular connections with the protein. Therefore, our research is important for the development of antimicrobial agents  相似文献   

19.
Abstract

Prolyl oligopeptidase (POP) enzyme has been studied for various disorders, viz. Schizophrenia, Alzheimer’s, Parkinson’s, Depression, Inflammation, etc., for three decades, but no drug has passed through the clinical trials, possibly because of indigent pharmacokinetics. This might have been a result of similar structures of drug candidates. This study aimed at identifying novel small non-peptidomimetic inhibitors for POP enzyme that could serve as a lead for developing newer drugs. Structure-based virtual screening of molecules of MolMall database was conducted on the POP enzyme (PDB ID 3DDU) to identify potential hits. The hits identified were subjected to computational pharmacokinetic screening followed by molecular mechanics/generalized Born and surface area studies to estimate the binding free energy of the docked complexes. After that, nine hits were selected and tested for POP inhibitory activity, among which one compound MM 4 was found to be most potent with EC50 of 100 µM. Compound MM 4 was further subjected to molecular dynamics simulations to study the overall stability of the ligand–protein complex. The compound interacted strongly with catalytic amino acid Arg643 by forming salt and water bridges; it also interacted well with amino acids Phe173, Arg252 and Met235. This study provides a lead molecule for further development of POP inhibitors.

Communicated by Ramaswamy H. Sarma  相似文献   

20.
Abstract

Streptococcal infections are common in human and antibiotics are frequently prescribed in clinical practice. However, infections caused by drug-resistant strains are particularly difficult to treat using common antibiotics. Hence, there is an urgent need for new antibiotics. Quorum sensing is a regulatory mechanism involving cell communication that is thought to play an important role in various bacterial infections, including those caused by Streptococcus. The ATP-binding cassette transporter ComA of Streptococcus is essential for quorum-sensing signal production. The inhibition of the ComA peptidase domain (ComA PEP) suppresses the quorum-sensing pathway and resulting changes in phenotype and/or behavior. Using virtual screening and molecular dynamics simulations, two promising candidate compounds, ZINC32918029 and ZINC6751571, were found. These compounds had similar binding modes and interactions to the experimentally determined reference inhibitor 6CH. However, a significantly stronger negative binding energy was achieved (?113.501?±?15.312?KJ/mol and ?103.153?±?11.912?KJ/mol for ZINC32918029 and ZINC6751571, respectively). Molecular dynamics simulations also revealed that ZINC32918029 and ZINC6751571 had a strong affinity for ComA PEP. These results indicate that ZINC32918029 and ZINC6751571 are promising candidate inhibitors of the Streptococcus quorum-sensing pathway.

Communicated by Ramaswamy H. Sarma  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号