首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Utilizing a new method for modeling furanose pseudorotation (D. A. Pearlman and S.-H. Kim, J. Biomol. Struct. Dyn. 3, 85 (1985)) and the empirical multiple correlations between nucleic acid torsion angles we derived in the previous report (D. A. Pearlman and S.-H. Kim, previous paper in this issue), we have made an energetic examination of the entire conformational spaces available to two nucleic acid oligonucleotides: d(ApApApA) and ApApApA. The energies are calculated using a semi-empirical potential function. From the resulting body of data, energy contour map pairs (one for the DNA molecule, one for the RNA structure) have been created for each of the 21 possible torsion angle pairs in a nucleotide repeating unit. Of the 21 pairs, 15 have not been reported previously. The contour plots are different from those made earlier in that for each point in a particular angle-angle plot, the remaining five variable torsion angles are rotated to the values which give a minimum energy at this point. The contour maps are overall quite consistent with the experimental distribution of oligonucleotide data. A number of these maps are of particular interest: delta (C5'-C4'-C3'-O3')-chi (O4'-C1'-N9-C4), where the energetic basis for an approximately linear delta-chi correlation can be seen: zeta (C3'-O3'-P-O5')-delta, in which the experimentally observed linear correlation between zeta and delta in DNA(220 degrees less than zeta less than 280 degrees) is clearly predicted; zeta-epsilon (C4'-C3'-O3'-P), which shows that epsilon increases with decreasing zeta less than 260 degrees; alpha (O3'-P-O5'-C5')-gamma (O5'-C5'-C4'-C3') where a clear linear correlation between these angles is also apparent, consistent with experiment; and several others. For the DNA molecule studied here, the sugar torsion delta is predicted to be the most flexible, while for the RNA molecule, the greatest amount of flexibility is expected to reside in alpha and gamma. Both the DNA and RNA molecules are predicted to be highly polymorphic. Complete energy minimization has been performed on each of the minima found in the energy searches and the results further support this prediction. Possible pathways for B-form to A-form DNA interconversion suggested by the results of this study are discussed. The results of these calculations support use of the new sugar modeling technique and torsion angle correlations in future conformational studies of nucleic acids.  相似文献   

2.
Abstract

There are seven significantly variable torsion angles in each monomer unit of a polynucleotide. Because of this, it is computationally infeasible to consider the energetics of all conformations available to a nucleic acid without the use of simplifications. In this paper, we develop functions suggested by and regression fit to crystallographic data which allow three of these torsion angles, α (03′-P-05′-C5′), δ (C5′-C4′-C3′-03′) and ε (C4′-C3′-03′-P), to be calculated as dependent variables of those remaining. Using these functions, the seven independent torsions are reduced to four, a reduction in complexity sufficient to allow an examination of the global conformational energetics of a nucleic acid for the remaining independent torsion angles. These functions are the first to quantitatively relate a dependent nucleic acid torsion angle to several different independent angles. In all three cases the data are fit reasonably well, and in one case, α, the fit is exceptionally good, lending support for the suitability of the functions in conformational searches. In addition, an examination of the most significant terms in each of the correlation functions allows insight into the physical basis for the correlations.  相似文献   

3.
H Broch  D Vasilescu 《Biopolymers》1979,18(4):909-930
This paper reports a systematic PCILO study of the conformation of the nucleic acid backbone. The authors principally studied the ω′ and ω phosphodiester torsion angles of the disugar triphosphate model as a simultaneous function of (1) the sugar nature, ribose or deoxyribose, (2) the different combinations of the sugar ring puckers C(2′)-endo-C(2′)-endo, C(3′)-endo-C(3′)-endo, C(3′)-endo-C(2′)-endo, and C(2′)-endo-C(3′)-endo, and (3) the different conformations around the ψ(C4′–C5′) exocyclic bond. The dependence of the (ω′,ω) conformational energy maps upon these different factors, is discussed. The results are in very good agreement with the observed structures of ribonucleic (RNA10, RNA11, A′-RNA12, tRNAPhe) and deoxyribonucleic acids (D-DNA, C-DNA 9.3, B-DNA 10, A-DNA 11). Thus the validity of this model, the disugar triphosphate unit, is ensured. The main conclusions that can be drawn from this systematic study are the following:
  • 1 The torsion around P-05′ (angle ω) is, as a general rule, more flexible than the torsion around P-03′ (angle ω′).
  • 2 There is no notable difference between the ribose–triphosphate units and the deoxyribose–triphosphate units for the C(3′)-endo–C(3′)-endo and C(3′)-endo–C(2′)-endo sugar puckers.
  • 3 The deoxyribose–triphosphate units with C(2′)-endo–C(2′)-endo and C(2′)-endo–C(3′)-endo sugar puckers show much more ω′ flexibility than the ribose–triphosphate units with the same sugar puckers and cis position for the 2′hydroxyl group.
  • 4 The preferred values of ω′ are independent of the sugar nature (ribose or deoxyribose) and of ψ values; they are correlated with the sugar pucker of the first sugar-phosphate unit:
    • C(3′)-endo-C(3′)-endo and C(3′)-endo-C(2′)-endo puckers ? ω′ ? 240° (g? region)
    • C(2′)-endo-C(2′)-endo and C(2′)-endo-C(3′)-endo puckers ? ω′ 180° (t region)
  • 5 The preferred values of ω are independent of the nature and the puckering of the sugars; they are correlated with the rotational state of the torsion angle ψ(C4′–C5′): ψ ? 60° (gg) ? ω ? 300° (g?), ψ ? 180° (gt) or 300° (tg) ? ω ? 60° (g+)
  相似文献   

4.
The conformational energetics of the tetranucleoside triphosphates d(ApApApA), d(GpGpGpG), d(CpCpCpC), d(TpTpTpT), ApApApA, GpGpGpG, CpCpCpC, and UpUpUpU are thoroughly examined using a classical potential energy function. The sugar modeling method and multiple correlation functions derived in previous papers of this series are utilized in these examinations. The data are analyzed and compared in terms of the energy profiles for rotation about the conformation-determining torsion angles in the tetramers. Overall, the predictions are in reasonable qualitative agreement with the existing experimental data. It is found that the base type does not greatly affect the locations of the important minima in these profiles, but rather exerts a large influence on the relative depths of the minima and the barriers to conversion between them. Conformational sequence dependence is manifest to a greater extent by the DNA tetramers than the RNA tetramers. Of the DNA tetramers, d(CpCpCpC) appears, from the results presented herein, to have the greatest potential for polymorphism. This and other findings are analyzed in terms of the preferences of particular DNA sequences for either the A-, B-, or Z-conformation.  相似文献   

5.
Abstract

A constrained model building procedure is used to generate nucleic acid structures of the familiar A-, B-, and Z-DNA duplexes. Attention is focused upon the multiple structural solutions associated with the arrangements of nucleic acid base pairs rather than the optimum sugar-phosphate structure. The glycosyl (χ) and sugar torsions (both the ring puckering and the exocyclic C5′-C4′ (ψ) torsion) are treated as independent variables and the resulting O3′…O5′ distances are used as closure determinants. When such distances conform to the known geometry of phosphate chemical bonding, an intervening phosphorus atom with correct C-O-P valence angles can be located. Four sequential torsion angles- φ,ω,ω,ω and φ about the C3′-O3′-P-O5′-C5′ bonds are then obtained as dependent variables. The resulting structures are categorized in terms of conformation, ranked in potential energy, and analyzed for torsional correlations. The numerical results are quite interesting with implications regarding nucleic acid models constructed to fit less than ideal experimental data. The multiple solutions to the problem are useful for comprehending the conformational complexities of thelocal sugar-phosphate backbone and for understanding the transitions between different helical forms. According to these studies, unique characterization of a nucleic acid duplex involves more than the determination of its base pair morphology, its sugar puckering preferences, or its groove binding features.  相似文献   

6.
7.
Abstract

In this work we explore the possibility of the opening of a single base without perturbation of its neighboring nucleotides. Low energy base opening into the grooves can be accomplished by rotation of the relevant backbone and glycosidic bond torsion angles. The pathway has been determined by identifying ζ torsion angle as the reaction coordinate together with the accompanying geometric requirement that guides the displacement of other torsion angles. Our study on Dickerson dodecamer duplex d(CGCGAATTCGCG)2 showed that all bases with normal equilibrium ζ can be rotated by ~ 30°, corresponding to ~ 3.5Å base displacement, towards the major groove. Such an opening extent is comparable with estimated amplitudes of local angular motions in DNA bases from NMR experiments, which might facilitate proton exchange. The computed base opening energy barrier is also comparable with measured base pair opening enthalpy. These results indicate possible relevance of the pathway studied in this work with experimentally observed base pair opening process. Our analysis also showed a preference for base opening along the major groove and an abnormal behavior for bases with unusual equilibrium ζ torsion angle.  相似文献   

8.
Eugene S. Stevens 《Biopolymers》1994,34(10):1395-1401
The optical rotation of methyl 3-O -(α-D -mannopyranosyl)-α-D -mannopyranoside is calculated semiempirically as a function of the linkage dihedral angles ? (H1-C1-O1-C3′) and ψ (C1-O1-C3′-H3′). Comparison with the observed optical rotation in aqueous solution indicates the existence of at least two conformers in solution, which implies a degree of linkage flexibility. The result is in agreement with some, but not all, calculated potential energy surfaces, and with recently published nmr data. © 1994 John Wiley & Sons, Inc.  相似文献   

9.
A study of the conformational spaces of the chiral proton pump inhibitor (PPI) drug omeprazole by semiempirical, ab-initio, and DFT methods is described. In addition to the chiral center at the sulfinyl sulfur atom, the chiral axis at the pyridine ring (due to the hindered rotation of the 4-methoxy substituents) was considered. The results were analyzed in terms of the 5-methoxy and 6-methoxy tautomers and the two pairs of enantiomers (R,P)/(S,M) and (R,M)/(S,P). Five torsion angles were systematically explored: the backbone rotations defined by D1 (N3-C2-S10-O11), D2 (C2-S10-C12-C13), and D3 (S10-C12-C13-N14) and two methoxy rotations defined by D4 (C6-C5-O8-C9) and D5 (C16-C17-O19-C20). Significant energy differences were revealed between the 5- and 6-methoxy tautomers, the extended and folded conformations, and the (S,M) and (S,P) diastereomers. The "extended M" conformation of the 6-methoxy tautomer of (S)-omeprazole was found to be the most stable conformer.  相似文献   

10.
Abstract

The molecular structure of N6-(4-nitrobenzyl)-β-D-2′-deoxyadenosine (I) has been determined by single crystal X-ray diffraction. A potent inhibitor of adenosine permeation in cultured S49 mouse lymphoma cells, I binds tightly (KD 2.4 nM) to high affinity membrane sites present on the nucleoside transporter elements of these cells. Compound I crystallizes in the trigonal space group P3221 with unit cell dimensions a = b = 8.0009(9)Å, c = 49.174(8)Å, and Z = 6. The structure was solved by direct methods and refined by least-squares to a final R = 0.038. The mean plane of the 4-nitrobenzyl group, an important substituent for potent nucleoside transport inhibition in a series of S6-substituted 6-thioinosine derivatives, is inclined at an angle of 120.6° to the plane of the adenine ring. The torsion angles around the methylene carbon atom of this benzyl group are C(6)-N(6)-C(10)-C(11), 96.6° and N(6)-C(10)-C(11)-C(12), 93.6°. The glycosidic torsion angle, X, is 217.1° which corresponds to the common anti nucleoside conformation. The deoxyribose ring, however, has the unusual C(1′)-exo conformation, with C(1′) displaced 0.608Å from the plane of C(2′), C(3′), C(4′) and O(4′). The conformation about the exocyclic C(4′)-C(5′) bond is gauche+.  相似文献   

11.
Eugene S. Stevens 《Biopolymers》1994,34(10):1403-1407
The optical rotation of methyl 2-O -(α-D -mannopyranosyl)-α-D -mannopyranoside is calculated semiempirically as a function of the linkage dihedral angles ? (H1-C1-O1-C2′) and ψ (C1-O1-C2′-H2′). Although the rotation calculated for the global energy minimum conformation found in several rigid-residue modeling calculations (?,ψ = ?40°,?20°) is in good agreement with the observed solution rotation, the observed rotation is also compatible with the limited flexibility inferred from more recent relaxed residue modeling calculations on a structurally related rhamnose disaccharide © 1994 John Wiley & Sons, Inc.  相似文献   

12.
Abstract

Analysis of the conformational space populated by the torsion angles and the correlation between the conformational energy and the sequence of DNA are important for fully understanding DNA structure and function. Presence of seven variable torsion angles about single covalent bonds in DNA main chain puts a big challenge for such analysis. We have carried out restrained energy minimization studies for four representative dinucleosides, namely d(ApA):d(TpT), d(CpG):d(CpG), d(GpC):d(GpC) and d(CpA):d(TpG) to determine the energy hyperspace of DNA in context to the values of the torsion angles and the structural properties of the DNA conformations populating the favorable regions of this energy hyperspace. The torsion angles were manipulated by constraining their values at the reference points and then performing energy minimization. The energy minima obtained on the potential energy contour plots mostly correspond to the conformations populated in crystal structures of DNA. Some novel favorable conformations that are not present in crystal structure data are also found. The plots also suggest few low energy routes for conformational transitions or the associated energy barrier heights. Analyses of base pairing and stacking possibility reveal structural changes accompanying these transitions as well as the flexibility of different base steps towards variations in different torsion angles.  相似文献   

13.
Abstract

In 3′,5′ deoxyribonucleoside diphosphates, in addition to the nature of the base and the sugar puckering, there are six single bond rotations. However, from the analysis of crystal structure data on the constituents of nucleic acids, only three rotational angles, that are about glycosyl bond, about C4′-C5′ and about C3′-O3′ bonds, are flexible. For a given sugar puckering and a base, potential energy calculations using non-bonded, electrostatic and torsional functions were carried out by varying the three torsion angles. The energies are represented as isopotential energy surfaces. Since the availability of the real-time color graphics, it is possible to analyse these isopotential energy surfaces. The calculations were carried out for C3′ exo and C3′ endo puckerings for deoxyribose and also for four bases. These calculations throw more light not only on the allowed regions for the three rotational angles but also on the relationships among them. The dependence of base and the puckering of the sugar on these rotational angles and thereby the flexibility of the 3′,5′ deoxyribonucleoside diphosphates is discussed. From our calculations, it is now possible to follow minimum energy path for interconversion among various conformers.  相似文献   

14.
Abstract

The 2′-O-methyl (2) and the 3′-O-methyl (3) derivatives of 1-deazaadenosine (1) were prepared. Single crystal X-ray analysis as well as 1H and 13C NMR studies were performed on the 3′-O-methyl-1-deazaadenosine 3. In the solid state, the glycosyl torsion angle (χ = 64.7°) is in the syn-range which is caused by an intramolecular (5′)CH2OH…N(3) hydrogen bond. The ribofuranose moiety adopts a 2 E (C-3′-exo; S) conformation and the orientation of the exocyclic C(4′)-C(5′) bond is + sc(+)g). The conformation in solution was found to be very similar to that in solid state. Whereas the 2′-O-methyl derivative of 1 is a strong inhibitor of adenosine deaminase the 3′-O-methyl derivative is neither inhibitor nor substrate.  相似文献   

15.
Energy-minimization studies were carried out on the trinucleoside diphosphate d(ApApA). The potential energy contributions from nonbonded, electrostatic, hydrogen-bonding, and torsional interactions were minimized by treating the 13 relevant dihedral angles as simultaneous variables. For the C(3′)-endo trimer, 14 low-energy conformations are within 10 kcal/mol above the lowest energy found, compared to only 3 in the case of the C(2′)-endo trimer. This result shows the flexible character of the C(3′)-endo unit. The hairpin-type, loop-promoting conformer with (ω′,ω) = (101°, 59°) was found to be the most favored structure at the 3′-terminus of d(ApApA). The predicted U- and L-type bend conformers were found to lie within 5 kcal/mol, compared to the lowest energy B-DNA structure. The A-DNA and Watson-Crick DNA types of helical conformers also lie within very small energy barriers. The phosphate group at the 5′-end of the nucleotide residue has a definite influence on the base of the corresponding nucleotide, keeping it in the normal anti-region, and hence on the base-stacking property. The results are compared with the presently available experimental data, mainly with the tRNAPhe crystal.  相似文献   

16.
Conformational energy maps for the four combinations of two consecutive torsional angles of the backbone structure of polydeoxyribonucleotides are presented. Both the C(2′)-endo and the C(3′)-endo conformation of sugar rings were considered. The energies were evaluated with an analytical expression representing the best fit to ab initio energies computed in the Hartree-Fock approximation, and consisting of a contribution from nonbonded interactions of the Lennard-Jones 6-12 type and an intrinsic torsional potential. It is shown that the minima of these maps are in excellent agreement with the most stable conformations as obtained from x-ray crystallographic analysis of nucleic acids and polynucleotides.  相似文献   

17.
Abstract

The J-coupling restrained molecular mechanics (JrMM) protocol, which correlates deoxyribose endocyclic torsion angles and vicinal proton-proton torsion angle φ1′ 2′ in Part I of this study, is demonstrated to be a viable alternative to efficiently derive the endocyclic torsion angle constraints for the determination of the solution structures of DNA molecules. Extensive testing demonstrating the validity of the JrMM-derived torsion angle constraints in the restrained molecular dynamics and energy minimization structural refinement processes is performed theoretically using an energy-minimized B-DNA model and experimentally using a DNA hexamer d(CGTACG)2. The results show that only a 0.2 Å difference exists between the RMSD values of the refined structures using the ideal and the JrMM-derived endocyclic torsion angle constraints. The JrMM-derived torsion angles are also determined to be in good agreement with the torsion angles derived through the use of the vicinal J-derived torsion angles. These results show that through the use of reliably measured J1′ 2′ values and computer simulation method, the endocyclic torsion angle constraints can be derived reliably and efficiently. Thus the JrMM method serves as an alternative strategy to generate endocyclic torsion angle constraints for the determination of the solution structures of DNA molecules.  相似文献   

18.
yDNA is a base‐modified nucleic acid duplex containing size‐expanded nucleobases. Base‐modified nucleic acids could expand the genetic alphabet and thereby enhance the functional potential of DNA. Unrestrained 100 ns MD simulations were performed in explicit solvent on the yDNA NMR sequence [5′(yA T yA yA T yA T T yA T)2] and two modeled yDNA duplexes, [5′(yC yC G yC yC G G yC G G)2] and [(yT5′ G yT A yC yG C yA yG T3′)?(yA5′ C T C yG C G yT A yC A3′)]. The force field parameters for the yDNA bases were derived in consistent with the well‐established AMBER force field. Our results show that DNA backbone can withstand the stretched size of the bases retaining the Watson‐Crick base pairing in the duplexes. The duplexes retained their double helical structure throughout the simulations accommodating the strain due to expanded bases in the backbone torsion angles, sugar pucker and helical parameters. The effect of the benzo‐expansion is clearly reflected in the extended C1′‐C1′ distances and enlarged groove widths. The size expanded base modification leads to reduction in base pair twist resulting in larger overlapping area between the stacked bases, enhancing inter and intra strand stacking interactions in yDNA in comparison with BDNA. This geometry could favour enhanced interactions with the groove binders and DNA binding proteins., 2016. © 2015 Wiley Periodicals, Inc. Biopolymers 105: 55–64, 2016  相似文献   

19.
Abstract

A relationship has been established to express the local helicity of a polynucleotide backbone directly in terms of the virtual bonds spanning the conformationally equivalent heminucleotide repeats, with a view to provide a better understanding of the cumulative effects of all the chemical bond rotational variations on local helicity. Using this, an analysis made with a few oligodeoxynucleotide crystal structures clearly brings forth that it is the concerted movements manifested in the near neighbour correlations between the pair of chemical bonds C4′—C5′ and P—05′ and C4′-C3′ and P-03′ of the 5′ and 3′ heminucleotides respectively that are primarily responsible for the observed non-uniform helical twists both in A and B type helical backbones. That these need not be restricted to oligodeoxynucleotides but may be a feature of oligoribonucleotides backbone also is shown from an analysis of helical segments of yeast tRNAPhe. A proposal of a unified or a grand two dimensional conformational plot which would help visualise succinctly the overall effect of the variations in all the repeating six chemical bonds of a polynucleotide backbone is made. Apart from considerable simplification, the plot affords identification on it regions characteristic of helical, and loop and bend conformations of nucleic acid backbone chain.  相似文献   

20.
A systematic and comprehensive study of the conformational spaces of the Cinchona alkaloids quinine, quinidine, cinchonine, cinchonidine, epiquinine, epiquinidine, epicinchonine, and epicinchonidine using the semiempirical PM3 method is described. The results were analyzed in terms of syn/anti and open/closed/hindered and alpha/beta/gamma conformations. Special emphasis was given to the torsion angles T(1) (C(4a')-C(4')-C(9)-C(8)), T(2) (C(4')-C(9)-C(8)-N(1)) and T(3) (H-O(9)-C(9)-C(8)) that define the backbone and the hydroxy conformation, respectively. The results reveal the quasi-enantiomeric relationships between quinine and quinidine and between epiquinine and epiquinidine, and the main structural differences that exist between the therapeutically active Cinchona alkaloids, quinine and quinidine, and their inactive epimers, epiquinine and epiquinidine. The lowest energy conformation of quinine and quinidine is anti-closed-alpha. The lowest energy conformations of epiquinine and epiquinidine are anti-open-beta and anti-open-alpha, respectively. Low energy conformations with an intramolecular hydrogen bond (N(1.)H(.)O(9)) were found in epiquinine (the global minimum) and epiquinidine, but not in quinine and quinidine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号