首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present a reinterpretation of linear dichroism data for the salt induced condensation of chromatin. A conflict between electric and flow linear dichroism data for identical chromatin samples, studied at varying degrees of Mg2+ induced folding, can be solved if the orientation in electric fields is mainly determined through the polarization of counter ions along the linker parts, whereas the orientation in flow is governed by the hydrodynamical response of the entire chromatin fiber. The orientation of a chromatin fiber in an electric field would then depend on the linker tilt angle so that at an angle larger than 55 degrees the fiber would tend to orient perpendicular to the applied field. The different orientation distributions obtained with the two methods of alignment may in this way provide extra information about the structure and folding of chromatin.  相似文献   

2.
Abstract

The optical anisotropy of chromatin with different length of the linker DNA isolated from a variety of sources (Frend erythroleukemia cells, calf thymus, hen erythrocytes and sea urchin sperm) has been studied in a large range of mono- and bivalent cations concentraitons by the use of flow linear dichroism (LD) and electric dichroism.

We have found that all chromatins studied displayed negative LD values in the range of 0.25 mM EDTA—2 mM NaCl and close positive values in the range of 2–100 mM NaCl. Mg2+ cations, in contrast to Na+ cations, induce optically isotropic chromatin fibers. All chromatin samples exhibit positive form effect amounting to 5–10% of LD amplitude observed at 260 nm. This form effect is determined by the anisotropic scattering of polarized light by single chromatin fibers.

The conformational transition at 2 mM NaCl leads to the distortion of chromatin filament structure. The reversibility of this distortion depends on the length of the linker DNA—for chromatins with the linker DNA of 10–30 b.p. it is parially reversible, while for preparations with longer linker DNA it is irreversible.

Relatively low electric field does not affect chromatin structure, while higher electric field (more than 7 kV/cm) distorts the structure of chromatin.

Presented resutls explain the contradictory data obtained by electrooptical and hydrooptical methods.  相似文献   

3.
Abstract

Identical samples containing polynucleosomal chains of chicken erythrocyte (CE) and Ehrlich ascites tumour (EA) chromatin were studied under various ionic conditions with regard to electric linear dichroism (ELD) and flow linear dichroism (FLD). Both orientation techniques consistently confirmed that, in the limit of very low ionic strength and in the absence of multivalent cations, the reduced linear dichroism of chromatin is negative in the DNA-base absorption band, as expected for an extended zig-zag polynucleosomal conformation. With increasing electrolyte content, both ELD and FLD decreased drastically in amplitude, but in contrast to the ELD which remains negative in an intermediate range of low ionic strength (0.1–0.5 mM Mg2+) the FLD changes sign and becomes positive. The ELD and FLD amplitudes decrease with higher Mg2+ concentrations and FLD even vanishes in the region of 0.2–0.4 mM; both signals are positive above 0.4–0.5 mM Mg2+.

The origin of the dissimilarities between ELD and FLD observations is still not fully understood. Several possibilities are considered: ELD signals are more influenced than FLD by the presence of short chromatin chains, nucleosomes and small pieces of naked DNA, while FLD is more susceptible to the presence of large, easily orientable, scattering aggregates. Different preferred orientation directions of the chromatin fibre with respect to electric and hydrodynamic fields may also be involved. Finally, FLD and ELD probably “see” different features of the chromatin structure.  相似文献   

4.
Cation-induced folding of 10 nm chromatin filament to 30 nm fiber was studied with hyperacetylated chromatin using light scattering at 90 degrees and flow linear dichroism. Acetylated chromatin folded in a way indistinguishable from that of the control chromatin: both the compactness of chromatin and the orientation of nucleosomes relative to the fiber axis were identical at a given salt concentration.  相似文献   

5.
A triple helix model for the structure of chromatin fiber   总被引:8,自引:0,他引:8  
A model of chromatin fiber structure is presented in which a repeating unit of a trinucleosome forms a 3-dimensional zigzag. Twisting and compression of the zigzag result in a triple helix structure. The model is built mainly on the flow linear dichroism data showing that nucleosomal disc faces are tilted relative to the fiber axis, the orientation of nucleosomes does not change upon folding and unfolding of chromatin, and the orientation of nucleosomes is maintained by the globular domain of histone H1.  相似文献   

6.
The optical anisotropy of chromatin with different length of the linker DNA isolated from a variety of sources (Frend erythroleukemia cells, calf thymus, hen erythrocytes and sea urchin sperm) has been studied in a large range of mono- and bivalent cations concentrations by the use of flow linear dichroism (LD) and electric dichroism. We have found that all chromatins studied displayed negative LD values in the range of 0.25 mM EDTA - 2 mM NaCl and close positive values in the range of 2-100 mM NaCl. Mg2+ cations, in contrast to Na+ cations, induce optically isotropic chromatin fibers. All chromatin samples exhibit positive form effect amounting to 5-10% of LD amplitude observed at 260 nm. This form effect is determined by the anisotropic scattering of polarized light by single chromatin fibers. The conformational transition at 2 mM NaCl leads to the distortion of chromatin filament structure. The reversibility of this distortion depends on the length of the linker DNA - for chromatins with the linker DNA of 10-30 b.p. it is parially reversible, while for preparations with longer linker DNA it is irreversible. Relatively low electric field does not affect chromatin structure, while higher electric field (more than 7 kV/cm) distorts the structure of chromatin. Presented results explain the contradictory data obtained by electrooptical and hydrooptical methods.  相似文献   

7.
The condensation of the 10 nm chromatin filament in the 30 nm fiber by monovalent cations, polyamines and bivalent cations was studied with light scattering at 90 degrees and flow linear dichroism methods. It was found that monovalent cation- and polyamine-induced folding was a two-step process: a precondensation, when a rotation of nucleosomes takes place only, and a condensation step without changes in nucleosome orientation. Divalent cations affected the structure of chromatin in one step only -- condensation of the chromatin filament being accompanied by nucleosome reorientation.  相似文献   

8.
Chromatin isolated from Ehrlich ascites cells was incubated with the tumourigenic compound (+)-7 beta,8 alpha-dihydroxy-9 alpha,10 alpha-epoxy-7,8,9,10- tetrahydrobenz[a]pyrene [(+)-anti-BPDE] at low ionic strength and the modified chromatin was analysed using flow linear dichroism (LD). The results confirm that (+)-anti-BPDE preferentially binds to the DNA in the linker regions, and furthermore show that the long axis of the bound pyrenyl chromophore is oriented parallel or close to parallel to the average orientation of the chromatin fiber axis. The data indicate that the binding geometry of (+)-anti-BPDE in chromatin is similar to that in pure DNA and deoxyguanosine-containing double-helical oligonucleotides.  相似文献   

9.
Abstract

We evaluated the contribution of in vivo histone acetylation to the folding of chromatin into its higher-order structures. We have compared high-order folding patterns of hyperacetylat- ed vs. unmodified chromatin in living green monkey kidney cells (CV1 line) using intercalator chloroquine diphospate to induce alterations in the twist of internucleosomal linker DNA. We have shown that histone hyperacetylation induced by antibiotic Trichostatin A significantly alters intercalator-mediated chromatin folding pattern.  相似文献   

10.
The optical anisotropy of chromatin with different length of the linker DNA isolated from a variety of sources (Friend erythroleukemia cells, calf thymus, hen erythrocytes and sea urchin sperm) has been studied in a large range of mono- and bivalent cations by the use of flow linear dichroism and electric dichroism. We have found that all chromatins studied displayed negative LD values in the range of 0.25 mM EDTA--2 mM NaCl and close positive values in the range of 2-100 mM NaCl. Mg2+ cations, in contrast to Na+ cations, induce optically isotropic chromatin fibers. All chromatin samples exhibit positive form effect amounting to 5-10% of LD amplitude observed at 260 nm. This form effect is determined by the anisotropic scattering of polarized light by single chromatin fibers. The conformational transition at 2 mM NaCl leads to the distortion of chromatin filament structure. The reversibility of this distortion depends on the length of the linker DNA--for chromatins with linker DNA 10-30 b.p. it is partially reversible, while for preparations with longer linker DNA it is irreversible. Relatively low electric fields do not have an effect on chromatin structure, while higher electric fields (more than 7 kV/cm) distort the structure of chromatin.  相似文献   

11.
J D McGhee  J M Nickol  G Felsenfeld  D C Rau 《Cell》1983,33(3):831-841
We have used electric dichroism to study the arrangement of nucleosomes in 30 nm chromatin solenoidal fibers prepared from a variety of sources (CHO cells, HeLa cells, rat liver, chicken erythrocytes, and sea urchin sperm) in which the nucleosome spacer length varies from approximately 10 to approximately 80 bp. Field-free relaxation times are consistent only with structures containing 6 +/- 1 nucleosomes for every 11 nm of solenoidal length. With very few assumptions about the arrangement of the spacer DNA, our dichroism data are consistent with the same orientation of the chromatosomes for every chromatin sample examined. This orientation, which maintains the faces of the radially arranged chromatosomes inclined at an angle between 20 degrees-33 degrees to the solenoid axis, thus appears to be a general structural feature of the higher order chromatin fiber.  相似文献   

12.
Abstract

The condensation of chicken erythrocyte (CE) and calf thymus (CT) chromatins upon addition of di- and multivalent cations has been studied using turbidityJulprecipitation and electric dichroism measurements. For all the cations investigated (Mg2+, Tb3+, Co(NH3)6 3+, spermidine Spd2+ and spermine Sp4+) condensation of CE chromatin occurred before the onset of aggregation, while aggregation of CT chromatin started before condensation with all cations except Mg2+ and Tb3+. Precipitation of CE chromatin required lower di- and multivalent cations concentrations than CT chromatin. The electric dichroism data for both chromatins, at low ionic strength in the absence of di- or multivalent cations, indicated that the nucleoprotein molecules were not totally decondensed but that a “precondensed” state was already present. A positive electric dichroism was observed for the most condensed chromatin fibers, in agreement with the “cross-linker” models. Tb3+ led to less compact condensed particles as judged from the electric dichroism observations, but electron microscopy revealed that “30 nm fibers” were formed. Very little aggregation was produced by Tb3+. On the contrary, spermine produced very large networks of condensed molecules, but large spheroidal particles were also observed. The condensation of CE chromatin happened without changes of solution conductivity upon cation salt addition, regardless of the condensing cation, indicating a cooperative uptake of the ions during this process.  相似文献   

13.
Electric field pulses induce a substantial increase of the light scattering intensity of double-helical DNA. The relative change of light scattering and also the reciprocal relaxation time constants under electric field pulses increase with increasing nucleotide concentration. These observations, together with a large difference between dichroism orientation time constants and light scattering time constants under electric field pulses, demonstrate that the main part of the light scattering effect is due not to field-induced orientation but to interactions between DNA helices. From the concentration dependence of the light scattering time constants we obtain, according to an isodesmic reaction model, association rate constants in the range 3 × 1010 M?1 helices s?1 for DNA with approx. 300 base-pairs. These values are at the limit of a diffusion-controlled DNA association and do not show any dependence upon the field strength. The dissociation rate constants kd decrease strongly with increasing field strength E and thus demonstrate that the interactions between the helices are induced by the electric field. This conclusion is consistent with independent measurements which do not reveal any DNA association at zero field strength. The observed linear relation between log(kd) and E2 suggests a field-induced reaction driven by dipole changes. According to this interpretation the change of dipole moment should be in the range of approx. 1400 debye. The dissociation rates for DNA helices with approx. 300 to approx. 800 base-pairs strongly increase with increasing sail concentration (measured in the range 1–5 mM ionic strength), whereas the association rate constants remain virtually unchanged. Measurements of the linear dichroism in the same range of DNA chain length demonstrate that for long field pulses of e.g., 40 μs, the amplitude approaches a maximum value and then decreases. The dichroism relaxation curves observed after long field pulses exhibit a component with a positive dichroism and an increased decay time. These observations suggest the formation of a DNA aggregate with an unusual arrangement of the bases.  相似文献   

14.
M Kubista  T H?rd  P E Nielsen  B Nordén 《Biochemistry》1985,24(23):6336-6342
We have studied the structure of nuclease-solubilized chromatin from Ehrlich ascites cells by flow linear dichroism (LD) using the anisotropic absorption of the DNA bases and of two intercalated dyes, ethidium bromide and methylene blue. It is confirmed that intercalation occurs preferentially in the linker part of the chromatin fiber, at binding ratios (dye/base) below 0.020. Using this information, we determined the orientation of the linker in relation to the average DNA organization in chromatin. The LD measurements indicate that the conformation of chromatin is considerably changed in the ionic strength interval 0.1-10 mM NaCl: with increasing salt concentration, the LD of the intrinsic DNA base absorption changes signs, from negative to positive, at approximately 2.5 mM NaCl. The LD of the intercalated dyes also changes signs, however, at a somewhat higher salt concentration. The results are analyzed in terms of possible allowed combinations of tilt angles of nucleosomes and pitch or tilt angles of linker DNA sections relative to the fiber axis, at different salt concentrations in the interval 0.1-10 mM NaCl. Two models for the salt-induced structural change of chromatin are discussed.  相似文献   

15.
We have studied the linear dichroism (LD) of rat liver chromatin oriented by flow. Soluble chromatin, prepared by brief nuclease digestion, is found to exhibit a positive LD at low ionic strength (1 mM NaCl), with a constant LD/A over the absorption band centered at 260 nm (A, isotropic absorbance). Several previous dichroism studies on soluble chromatin have been performed on sonicated materials and have given negative LD, probably due to the presence of uncoiled DNA. The positive dichroism can be interpreted in terms of a supercoil of DNA in chromatin with a pitch angle larger than 55°, and is, for example, consistent with a model where the cylindrical nucleosome core particles are stacked face to face in the chromatin filament. In contrast to the nuclease-digested chromatin, sonicated chromatin was confirmed to exhibit negative LD. This difference can be attributed to a partial uncoiling of the linker regions between the nucleosomes due to the shearing. The structural transition of chromatin to a compact form can be observed as a reduction of the positive LD of the nuclease-digested chromatin to almost zero in 0.1 M NaCl or in 0.1 mM MgCl2. This transition is due to a decreased electrostatic repulsion between negative phosphate groups on the DNA chain. In the case of Na+, this can be explained as a screening effect due to the bulk concentration of Na+. With Mg2+ a considerably stronger effect may indicate a more localized binding to the phosphates. At ionic strengths higher than 0.5M NaCl, the dissociation of the histones from DNA leads to uncoiling of chromatin. The change in LD during this process shows that histone H1 contributes only to a small degree to the coiling of the DNA chain, whereas histones H3 and H4 play the major role in the coiling.  相似文献   

16.
Electric dichroism of chromatin   总被引:4,自引:0,他引:4  
The linear dichroism of sheared calf thymus chromatin, oriented in solution by a pulsed electric field, has been measured. The limiting value of this dichroism is considerably less negative than that of calf thymus DNA, but does not approach the positive values predicted if chromatin were uniformly supercoiled in the manner suggested by X-ray studies. The decay of the dichroism of chromatin, after termination of the electric pulse, is similar to that of DNA, indicating that chromatin retains a high degree of chain flexibility. These data, as well as previous flow dichroism studies (Ohba, 1966; Smart &; Bonner, 1971), suggest that chromatin is not predominantly supercoiled in solutions of low ionic strength. Evidence for a structurally heterogeneous model for chromatin is discussed.  相似文献   

17.
Abstract

We have used the intercalative agent ethidium bromide to examine the association between chromatin high-order folding and the twist of internucleosomal DNA regions. The analysis was carried out on intact nuclei isolated from human HeLa S3 cells. Our data shows that alterations in the nucleosomal linker twist significantly influence the way in which a chain of nucleosomes folds to form different higher-order structures. The assay used allowed us to identify the existence of two chromatin fractions differing in their extent of high-order folding. We have also found that active gene sequences are preferentially associated with the chromatin fraction corresponding to the more extended conformation. A model is proposed to account for the effect of variations in the nucleosome linker twist on the state of chromatin folding.  相似文献   

18.
A.G. Gagliano  N.E. Geacintov  J. Breton 《BBA》1977,461(3):460-474
Whole or broken spinach chloroplasts, bacterial chromatosphores and CPI chlorophyll · protein complexes in aqueous suspensions at room temperature can be oriented in externally applied electric fields. The orientation is observed by monitoring the electric field induced linear dichroism (LD). With whole chloroplasts a detectable LD signal is observed using voltages as low as 2–3 V (50 Hz alternating voltage) across an 0.3 cm electrode gap, and nearly complete orientation is observed at fields of 30 V · cm?1. The wavelength dependence of the LD signals using either orienting electric fields (E) alone, or magnetic fields (B) alone, are similar but opposite in sign with E and B pointing in the same direction. The chloroplasts tend to orient in such a way that the membrane planes are parallel to E. The CPI complexes and bacterial chromatophores require much higher electric fields for orientation than whole chloroplasts (for CPI complexes E > 2000 V · cm?1); rectangular, millisecond duration, voltage pulses are utilized for the observation of electric field induced LD spectra in these cases. Oriented CPI complexes exhibit LD maxima of the same sign at 685 and at 440 nm. The oriented chromatophores exhibit an LD spectrum of either positive or negative sign, depending on the wavelength. The mechanisms of the orientation are discussed.  相似文献   

19.
Electric dichroism and X-ray scattering measurements on solutions of uncondensed and condensed chicken erythrocyte chromatin were interpreted on the basis of model calculations. Information about the state of uncondensed fibers in the conditions of electric dichroism measurements was obtained from scattering patterns recorded as a function of pH, in the presence of spermine and at very low monovalent cation concentrations. Electric dichroism measurements on a complex of uncondensed chromatin with methylene blue were made to determine the contribution of the linker and of the nucleosomes to the total dichroism.A new approach to calculate the dichroism from realistic structural models, which also yields other structural parameters (radius of gyration, radius of gyration of the cross-section, mass per unit length) was used. Only a restricted range of structures is simultaneously compatible with all experimental results. Further, it is shown that previous interpretations of dichroism measurements on chromatin were in contradiction with X-ray scattering data and failed to take into account the distribution of orientation of the nucleosomes in the fibers. When this is done, it is found that the linker DNA in chicken erythrocyte and sea urchin chromatin must run nearly perpendicularly to the fibre axis. Taken together with the dependence of the fibre diameter on the linker length, these results provede the strongest evidence hitherto available for a model in which the linker crosses the central part of the fibre.  相似文献   

20.
The basic and intrinsically disordered C-terminal domain (CTD) of the linker histone (LH) is essential for chromatin compaction. However, its conformation upon nucleosome binding and its impact on chromatin organization remain unknown. Our mesoscale chromatin model with a flexible LH CTD captures a dynamic, salt-dependent condensation mechanism driven by charge neutralization between the LH and linker DNA. Namely, at low salt concentration, CTD condenses, but LH only interacts with the nucleosome and one linker DNA, resulting in a semi-open nucleosome configuration; at higher salt, LH interacts with the nucleosome and two linker DNAs, promoting stem formation and chromatin compaction. CTD charge reduction unfolds the domain and decondenses chromatin, a mechanism in consonance with reduced counterion screening in vitro and phosphorylated LH in vivo. Divalent ions counteract this decondensation effect by maintaining nucleosome stems and expelling the CTDs to the fiber exterior. Additionally, we explain that the CTD folding depends on the chromatin fiber size, and we show that the asymmetric structure of the LH globular head is responsible for the uneven interaction observed between the LH and the linker DNAs. All these mechanisms may impact epigenetic regulation and higher levels of chromatin folding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号