首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The genus Gluconobacter comprises some of the most frequently used microorganisms when it comes to biotechnological applications. Not only has it been involved in "historical" production processes, such as vinegar production, but in the last decades many bioconversion routes for special and rare sugars involving Gluconobacter have been developed. Among the most recent are the biotransformations involved in the production of L-ribose and miglitol, both very promising pharmaceutical lead molecules. Most of these processes make use of Gluconobacter's membrane-bound polyol dehydrogenases. However, recently other enzymes have also caught the eye of industrial biotechnology. Among them are dextran dextrinase, capable of transglucosylating substrate molecules, and intracellular NAD-dependent polyol dehydrogenases, of interest for co-enzyme regeneration. As such, Gluconobacter is an important industrial microbial strain, but it also finds use in other fields of biotechnology, such as biosensor-technology. This review aims to give an overview of the myriad of applications for Gluconobacter, with a special focus on some recent developments.  相似文献   

2.
The chromosomal locus NP_636946 of Xanthomonas campestris DSM 3586 (ATCC 33913) which was earlier presumed to encode a quinoprotein glucose dehydrogenase has been cloned, expressed in Escherichia coli and the recombinant enzyme has been characterised. It was found to have no glucose dehydrogenase activity but to be active on many different polyols and diols, aliphatic alcohols, certain aldonic acids and amino-sugars. The product of d-gluconic acid oxidation was 5-keto-d-gluconic acid. The enzyme differs from polyol/gluconate dehydrogenases found in Gluconobacter by its single-chain architecture, different substrate specificity and much higher (20- to 30-fold) expression level in E.coli.  相似文献   

3.
Bacteria belonging to the genus Acetobacter and Gluconobacter, and enzymes isolated from them, have been extensively used for biosensor construction in the last decade. Bacteria used as a biocatalyst are easy to prepare and use in amperometric biosensors. They contain multiple enzyme activities otherwise not available commercially. The range of compounds analyzable by Gluconobacter biosensors includes: mono- and poly-alcohols, multiple aldoses and ketoses, several disaccharides, triacylglycerols, and complex parameters like utilizable saccharides or biological O2 demand. Here, the recent trends in Gluconobacter biosensors and current practical applications are summarized. An erratum to this article can be found at  相似文献   

4.
The use of renewable waste feedstocks is an environment-friendly choice contributing to the reduction of waste treatment costs and increasing the economic value of industrial by-products. Glycerol (1,2,3-propanetriol), a simple polyol compound widely distributed in biological systems, constitutes a prime example of a relatively cheap and readily available substrate to be used in bioprocesses. Extensively exploited as an ingredient in the food and pharmaceutical industries, glycerol is also the main by-product of biodiesel production, which has resulted in a progressive drop in substrate price over the years. Consequently, glycerol has become an attractive substrate in biotechnology, and several chemical commodities currently produced from petroleum have been shown to be obtained from this polyol using whole-cell biocatalysts with both wild-type and engineered bacterial strains. Pseudomonas species, endowed with a versatile and rich metabolism, have been adopted for the conversion of glycerol into value-added products (ranging from simple molecules to structurally complex biopolymers, e.g. polyhydroxyalkanoates), and a number of metabolic engineering strategies have been deployed to increase the number of applications of glycerol as a cost-effective substrate. The unique genetic and metabolic features of glycerol-grown Pseudomonas are presented in this review, along with relevant examples of bioprocesses based on this substrate – and the synthetic biology and metabolic engineering strategies implemented in bacteria of this genus aimed at glycerol valorization.  相似文献   

5.
Agaves are plants of importance both in Mexican culture and economy and in other Latin-American countries. Mexico is reported to be the place of Agave origin, where today, scientists are looking for different industrial applications without compromising its sustainability and preserving the environment. To make it possible, a deep knowledge of all aspects involved in production process, agro-ecological management and plant biochemistry and physiology is required. Agave biotechnology research has been focusing on bio-fuels, beverages, foods, fibers, saponins among others. In this review, we present the advances and challenges of Agave biotechnology.  相似文献   

6.
Abe K  Gomi K  Hasegawa F  Machida M 《Mycopathologia》2006,162(3):143-153
Aspergillus oryzae is used extensively for the production of the traditional Japanese fermented foods sake (rice wine), shoyu (soy sauce), and miso (soybean paste). In recent years, recombinant DNA technology has been used to enhance industrial enzyme production by A. oryzae. Recently completed genomic studies using expressed sequence tag (EST) analyses and whole-genome sequencing are quickly expanding the industrial potential of the fungus in biotechnology. Genes that have been newly discovered through genome research can be used for the production of novel valuable enzymes and chemicals, and are important for designing new industrial processes. This article describes recent progress of A . oryzae genomics and its impact on industrial production of enzymes, metabolites, and bioprocesses.  相似文献   

7.
Biotechnological production of erythritol and its applications   总被引:1,自引:0,他引:1  
Erythritol, a four-carbon polyol, is a biological sweetener with applications in food and pharmaceutical industries. It is also used as a functional sugar substitute in special foods for people with diabetes and obesity because of its unique nutritional properties. Erythritol is produced by microbial methods using mostly osmophilic yeasts and has been produced commercially using mutant strains of Aureobasidium sp. and Pseudozyma tsukubaensis. Due to the high yield and productivity in the industrial scale of production, erythritol serves as an inexpensive starting material for the production of other sugars. This review focuses on the approaches for the efficient erythritol production, strategies used to enhance erythritol productivity in microbes, and the potential biotechnological applications of erythritol.  相似文献   

8.
9.
Biocatalytic processes are useful methods for the production of chiral intermediates. As an example, alcohol dehydrogenases are applied for the production of chiral alcohols by asymmetric reduction of prochiral ketones. From this class of enzymes alcohol dehydrogenase from Lactobacillus brevis will be described with respect to its industrial application. The process for the production of methyl (R)‐3‐hydroxybutyrate using this enzyme is discussed in more detail. The application of alcohol dehydrogenases can be limited by the commercial availability of the starting material as, for instance, in the case of the synthesis of chiral α‐hydroxy acids. For these products asymmetric addition of hydrocyanic acid to aldehydes catalyzed by hydroxynitrile lyases such as (S)‐oxynitrilase from Manihot esculenta is a complementary approach. Also, this enzyme will be characterized in more detail with respect to its industrial production and application.  相似文献   

10.
The acetic acid bacteria (AAB) have important roles in food and beverage production, as well as in the bioproduction of industrial chemicals. In recent years, there have been major advances in understanding their taxonomy, molecular biology, and physiology, and in methods for their isolation and identification. AAB are obligate aerobes that oxidize sugars, sugar alcohols, and ethanol with the production of acetic acid as the major end product. This special type of metabolism differentiates them from all other bacteria. Recently, the AAB taxonomy has been strongly rearranged as new techniques using 16S rRNA sequence analysis have been introduced. Currently, the AAB are classified in ten genera in the family Acetobacteriaceae. AAB can not only play a positive role in the production of selected foods and beverages, but they can also spoil other foods and beverages. AAB occur in sugar- and alcohol-enriched environments. The difficulty of cultivation of AAB on semisolid media in the past resulted in poor knowledge of the species present in industrial processes. The first step of acetic acid production is the conversion of ethanol from a carbohydrate carried out by yeasts, and the second step is the oxidation of ethanol to acetic acid carried out by AAB. Vinegar is traditionally the product of acetous fermentation of natural alcoholic substrates. Depending on the substrate, vinegars can be classified as fruit, starch, or spirit substrate vinegars. Although a variety of bacteria can produce acetic acid, mostly members of Acetobacter, Gluconacetobacter, and Gluconobacter are used commercially. Industrial vinegar manufacturing processes fall into three main categories: slow processes, quick processes, and submerged processes. AAB also play an important role in cocoa production, which represents a significant means of income for some countries. Microbial cellulose, produced by AAB, possesses some excellent physical properties and has potential for many applications. Other products of biotransformations by AAB or their enzymes include 2-keto-L-gulonic acid, which is used for the production of vitamin C; D-tagatose, which is used as a bulking agent in food and a noncalorific sweetener; and shikimate, which is a key intermediate for a large number of antibiotics. Recently, for the first time, a pathogenic acetic acid bacterium was described, representing the newest and tenth genus of AAB.  相似文献   

11.
Several Aspergillus species, in particular Aspergillus niger and Aspergillus oryzae, are widely used as protein production hosts in various biotechnological applications. In order to improve the expression and secretion of recombinant proteins in these filamentous fungi, several novel genetic engineering strategies have been developed in recent years. This review describes state-of-the-art genetic manipulation technologies used for strain improvement, as well as recent advances in designing the most appropriate engineering strategy for a particular protein production process. Furthermore, current developments in identifying bottlenecks in the protein production and secretion pathways are described and novel approaches to overcome these limitations are introduced. An appropriate combination of expression vectors and optimized host strains will provide cell factories customized for each production process and expand the great potential of Aspergilli as biotechnology workhorses to more complex multi-step industrial applications.  相似文献   

12.
The genus Pycnoporus forms a cosmopolitan group of four species belonging to the polyporoid white-rot fungi, the most representative group of homobasidiomycetes causing wood decay. Pycnoporus fungi are listed as food- and cosmetic-grade microorganisms and emerged in the early 1990s as a genus whose biochemistry, biodegradation and biotechnological properties have since been progressively detailed. First highlighted for their original metabolic pathways involved in the functionalization of plant cell wall aromatic compounds to yield high-value molecules, e.g. aromas and antioxidants, the Pycnoporus species were later explored for their potential to produce various enzymes of industrial interest, such as hydrolases and oxidases. However, the most noteworthy feature of the genus Pycnoporus is its ability to overproduce high redox potential laccase—a multi-copper extracellular phenoloxidase—as the predominant ligninolytic enzyme. A major potential use of the Pycnoporus fungi is thus to harness their laccases for various applications such as the bioconversion of agricultural by-products and raw plant materials into valuable products, the biopulping and biobleaching of paper pulp and the biodegradation of organopollutants, xenobiotics and industrial contaminants. All the studies performed in the last decade show the genus Pycnoporus to be a strong contender for white biotechnology. In this review, we describe the properties of Pycnoporus fungi in relation to their biotechnological applications and potential.  相似文献   

13.
Driven by advancements in high-throughput biological technologies and the growing number of sequenced genomes, the construction of in silico models at the genome scale has provided powerful tools to investigate a vast array of biological systems and applications. Here, we review comprehensively the uses of such models in industrial and medical biotechnology, including biofuel generation, food production, and drug development. While the use of in silico models is still in its early stages for delivering to industry, significant initial successes have been achieved. For the cases presented here, genome-scale models predict engineering strategies to enhance properties of interest in an organism or to inhibit harmful mechanisms of pathogens. Going forward, genome-scale in silico models promise to extend their application and analysis scope to become a transformative tool in biotechnology.  相似文献   

14.
The biotechnological production of sorbitol   总被引:2,自引:0,他引:2  
Sorbitol, a polyol found in many fruits, is of increasing industrial interest as a sweetener, humectant, texturizer and softener. At present, it is produced chemically. The bacterium Zymomonas mobilis is able to produce sorbitol and gluconic acid from fructose and glucose, respectively. This is possible in a one-step reaction via a glucose-fructose oxidoreductase so far only known from Z. mobilis. The possibilities for the industrial production of sorbitol by Z. mobilis are discussed, and compared with the current chemical production method as well as other microbiological processes. Electronic Publication  相似文献   

15.
Abstract

The application of recent discoveries in genetic engineering to marine plants and animals offers enormous potential for harvesting more food, pharmaceuticals, and industrial compounds from the sea. Using biotechnology's ability to excise and replace genetic material selected for specific functions, such efforts would allow manifold increases in production of substances conventionally reliant on the capture of often rare marine species. This article reviews the status of marine biotechnology with particular attention to its current and prospective uses for medicine, industrial chemicals, pollution control, and aquaculture. It concludes with some observations about the relationship of marine biotechnology to broader economic, legal, and ethical concerns about genetic manipulation.  相似文献   

16.
Quorum sensing (QS) has received significant attention in the past few decades. QS describes population density dependent cell to cell communication in bacteria using diffusible signal molecules. These signal molecules produced by bacterial cells, regulate various physiological processes important for social behavior and pathogenesis. One such process regulated by quorum sensing molecules is the production of a biosurfactant, rhamnolipid. Rhamnolipids are important microbially derived surface active agents produced by Pseudomonas spp. under the control of two interrelated quorum sensing systems; namely las and rhl. Rhamnolipids possess antibacterial, antifungal and antiviral properties. They are important in motility, cell to cell interactions, cellular differentiation and formation of water channels that Currently, biosurfactants are unable to compete economically with chemically synthesized compounds in the market due to high production costs. Once the genes required for biosurfactant production have been identified, they can be placed under the regulation of strong promoters in nonpathogenic, heterologous hosts to enhance production. The production of rhamnolipids could be increased by cloning both the rhlAB rhamnosyltransferase genes and the rhlRI quorum sensing system into a suitable bacterium such as E. coli or P. putida and facilitate rhamnolipid production. Biosurfactants can also be genetically engineered for different industrial applications assuming there is a strong understanding of both the genetics and the structure-function relationships of each component of the molecule. Genetic engineering of surfactin has already been reported, with recent papers describing the creation of novel peptide structures from the genetic recombination of several peptide synthetases. Recent application of dynamic metabolic engineering strategies for controlled gene expression could lower the cost of fermentation processes by increasing the product formation. Therefore, by integrating a genetic circuit into applications of metabolic engineering the biochemical production can be optimized. Furthermore, novel strategies could be designed on the basis of information obtained from the studies of quorum sensing and biosurfactants produced suggesting enormous practical applications.  相似文献   

17.
18.
The commercial gelling agent, gellan, is an extracellular polysaccharide (EPS) produced by Sphingomonas paucimobilis ATCC 31461. In recent years, significant progress in understanding the relationship between gellan structure and properties and elucidation of the biosynthesis and engineering of this recent product of biotechnology has been made. This review focuses on recent advances in this field. Emphasis is given to identification and characterization of genes and enzymes involved, or predicted to be involved, in the gellan biosynthetic pathway, at the level of synthesis of sugar-activated precursors, of the repeat unit assembly and of gellan polymerization and export. Identification of several genes, biochemical characterization of the encoded enzymes and elucidation of crucial steps of the gellan pathway indicate that possibilities now exist for exerting control over gellan production at any of the three levels of its biosynthesis. However, a better knowledge of the poorly understood steps and of the bottlenecks and regulation of the pathway, the characterization of the composition, structure and functional properties of gellan-like polymers produced either by the industrial strain under different culture conditions or by mutants are still required for eventual success of the metabolic engineering of gellan production. Journal of Industrial Microbiology & Biotechnology (2002) 29, 170–176 doi:10.1038/sj.jim.7000266 Received 11 February 2002/ Accepted in revised form 09 April 2002  相似文献   

19.
20.

Background  

Microbial communities are involved in many processes relevant to industrial and medical biotechnology, such as the formation of biofilms, lignocellulosic degradation, and hydrogen production. The manipulation of synthetic and natural microbial communities and their underlying ecological parameters, such as fitness, evolvability, and variation, is an increasingly important area of research for synthetic biology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号