首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ribosomes of the amitochondriate but hydrogenosome-containing protist lineage, the trichomonads, have previously been reported to be prokaryotic or primitive eukaryotic, based on evidence that they have a 70S sedimentation coefficient and a small number of proteins, similar to prokaryotic ribosomes. In order to determine whether the components of the trichomonad ribosome indeed differ from those of typical eukaryotic ribosomes, the ribosome of a representative trichomonad, Trichomonas vaginalis, was characterized. The sedimentation coefficient of the T. vaginalis ribosome was smaller than that of Saccharomyces cerevisiae and larger than that of Escherichia coli. Based on two-dimensional PAGE analysis, the number of different ribosomal proteins was estimated to be approximately 80. This number is the same as those obtained for typical eukaryotes (approximately 80) but larger than that of E. coli (approximately 55). N-Terminal amino acid sequencing of 18 protein spots and the complete sequences of 4 ribosomal proteins as deduced from their genes revealed these sequences to display typical eukaryotic features. Phylogenetic analyses of the five ribosomal proteins currently available also clearly confirmed that the T. vaginalis sequences are positioned within a eukaryotic clade. Comparison of deduced secondary structure models of the small and large subunit rRNAs of T. vaginalis with those of other eukaryotes revealed that all helices commonly found in typical eukaryotes are present and conserved in T. vaginalis, while variable regions are shortened or lost. These lines of evidence demonstrate that the T. vaginalis ribosome has no prokaryotic or primitive eukaryotic features but is clearly a typical eukaryotic type.  相似文献   

2.
Shasmal M  Sengupta J 《PloS one》2012,7(2):e31742
Here we present analysis of a 3D cryo-EM map of the 70S ribosome from Mycobacterium smegmatis, a saprophytic cousin of the etiological agent of tuberculosis in humans, Mycobacterium tuberculosis. In comparison with the 3D structures of other prokaryotic ribosomes, the density map of the M. smegmatis 70S ribosome reveals unique structural features and their relative orientations in the ribosome. Dramatic changes in the periphery due to additional rRNA segments and extra domains of some of the peripheral ribosomal proteins like S3, S5, S16, L17, L25, are evident. One of the most notable features appears in the large subunit near L1 stalk as a long helical structure next to helix 54 of the 23S rRNA. The sharp upper end of this structure is located in the vicinity of the mRNA exit channel. Although the M. smegmatis 70S ribosome possesses conserved core structure of bacterial ribosome, the new structural features, unveiled in this study, demonstrates diversity in the 3D architecture of bacterial ribosomes. We postulate that the prominent helical structure related to the 23S rRNA actively participates in the mechanisms of translation in mycobacteria.  相似文献   

3.
Rabbits were immunised againstEscherichia coli ribosomes and the partially purified immunoglobulin G fraction had maximum ability to precipitate the ribosomes as well as the extracted ribosomal proteins. By digestion of immuno-globulin G with papain, monovalent Fab fragments were produced. The 70 S ribosome and its subunits (50 S and 30 S) were separately treated with Fab and then tested in the kinetic assay of degradation of ribosomes by ribonuclease I at various Mg2+ concentrations. Treated ribosomes and their subunits were degraded at faster rates than the nontreated ones; the rates in both the control and the treated cases were dependent on the concentration of Mg2+. These results indicate the unfolding of the structure of the ribosome on treatment with antibody fragments, which may be due to the weakening of the interaction between rRNAs and ribosomal proteins.  相似文献   

4.
Summary The surface topography of the intact 70S ribosome and free 30S and 50S subunits from Bacillus stearothermophilus strain 2184 was investigated by lactoperoxidase-catalyzed iodination. Two-dimensional polyacrylamide gel electrophoresis was employed to separate ribosomal proteins for analysis of their reactivity. Free 50S subunits incorporated about 18% more 125I than did 50S subunits derived from 70S ribosomes, whereas free 30S subunits and 30S subunits derived from 70S ribosomes incorporated similar amounts of 125I. Iodinated 70S ribosomes and subunits retained 62–78% of the protein synthesis activity of untreated particles and sedimentation profiles showed no gross conformational changes due to iodination. The proteins most reactive to enzymatic iodination were S4, S7, S10 and Sa of the small subunit and L2, L4, L5/9, L6 and L36 of the large subunit. Proteins S2, S3, S7, S13, Sa, L5/9, L10, L11 and L24/25 were labeled substantially more in the free subunits than in the 70S ribosome. Other proteins, including S5, S9, S12, S15/16, S18 and L36 were more extensively iodinated in the 70S ribosome than in the free subunits. The locations of tyrosine residues in some homologus ribosomal proteins from B. stearothermophilus and E. coli are compared.  相似文献   

5.
Ribosomal RNAs (rRNAs), assisted by ribosomal proteins, form the basic structure of the ribosome, and play critical roles in protein synthesis. Compared to prokaryotic ribosomes, eukaryotic ribosomes contain elongated rRNAs with several expansion segments and larger numbers of ribosomal proteins. To investigate architectural evolution and functional capability of rRNAs, we employed a Tn5 transposon system to develop a systematic genetic insertion of an RNA segment 31 nt in length into Escherichia coli rRNAs. From the plasmid library harboring a single rRNA operon containing random insertions, we isolated surviving clones bearing rRNAs with functional insertions that enabled rescue of the E. coli strain (Δ7rrn) in which all chromosomal rRNA operons were depleted. We identified 51 sites with functional insertions, 16 sites in 16S rRNA and 35 sites in 23S rRNA, revealing the architecture of E. coli rRNAs to be substantially flexible. Most of the insertion sites show clear tendency to coincide with the regions of the expansion segments found in eukaryotic rRNAs, implying that eukaryotic rRNAs evolved from prokaryotic rRNAs suffering genetic insertions and selections.  相似文献   

6.
We are exploring the potential to trace species evolution with the ribosomal proteins (RibPs) present in bacterial, eukaryotic, and archaeal ribosomes and to compare the independent trees for consistency. The complete genomes of over 8400 bacteria, eukaryota, and archaea are presently in the SwissPro/TrEMBL (SPT) database. A search of SPT using a vector designed with ScanProsite formats (V1) finds and aligns 8405 sequences (5312 bacterial, 2905 eukaryotic, and 169 archaeal) that are homologous with bone fide bacterial S19 ribosomal proteins(S19s). When the 8405 sequences are perfectly aligned, 15 residues are conserved at 90% identity and 40 are conserved at 70% identity. We are not aware of any previous publication reporting sequence alignment of 8400 members of any single family including all bacteria, eukaryota and archaea, for which complete genomes have been published.A Pro and a Gly separated by 11 residues are 100% conserved in the 8405 S19s. In the position immediately before the fully conserved Gly, two residues (Asp and Asn) are present in 98.3% of the 8405 sequences. The Asp residue is found almost exclusively in 2190 gram-positive bacteria. The Asn residue is found in 3065 gram-negative bacteria, 123 Archaea, 1939 eukaryotes, and 64 specific species of gram-positive bacteria. There is biochemical evidence for the existence of distinct mitochondrial, chloroplast, and cytosolic ribosomes and reports that plants have all three forms and mammals only two. Reliable data concerning how individual ribosomal proteins differ in different types of ribosomes are meager. Examination of the eukaryotic S19s reveals the existence of three distinct types. Two of the distinctly different types are found in most fungi, three of the types are found in some viridiplante, and only one type is found in metazoa and archaea. We demonstrate the sequence homology between the mitochondrial form found in fungi and plants and the S19 proteins of alpha proteobacteria; between the chloroplast S19s and the S19s of cyanobacteria; and among the cytosolic S19s found only in fungi, metazoa, archaea, and in some viridiplantae. Our findings suggest that most archaeal species appeared after a gene duplication event in fungi that correlates with the origin of the cytosolic ribosome.  相似文献   

7.
The mitochondrial ribosome is responsible for the biosynthesis of protein components crucial to the generation of ATP in the eukaryotic cell. Because the protein:RNA ratio in the mitochondrial ribosome (approximately 69:approximately 31) is the inverse of that of its prokaryotic counterpart (approximately 33:approximately 67), it was thought that the additional and/or larger proteins of the mitochondrial ribosome must compensate for the shortened rRNAs. Here, we present a three-dimensional cryo-electron microscopic map of the mammalian mitochondrial 55S ribosome carrying a tRNA at its P site, and we find that instead, many of the proteins occupy new positions in the ribosome. Furthermore, unlike cytoplasmic ribosomes, the mitochondrial ribosome possesses intersubunit bridges composed largely of proteins; it has a gatelike structure at its mRNA entrance, perhaps involved in recruiting unique mitochondrial mRNAs; and it has a polypeptide exit tunnel that allows access to the solvent before the exit site, suggesting a unique nascent-polypeptide exit mechanism.  相似文献   

8.
A ribosome undergoes significant conformational changes during elongation of polypeptide chain that are correlated with structural changes of rRNAs. We tested nine different antisense oligodeoxynucleotides complementary to the selected, highly conserved sequences of Lupinus luteus 26S rRNA that are engaged in the interactions with tRNA molecules. The ribosomes were converted either to pre- or to posttranslocational states, with or without prehybridized oligonucleotides, using tRNA or mini-tRNA molecules. The activity of those ribosomes was tested via the so-called binding assay. We observed well-defined structural changes of ribosome's conformation during different steps of the elongation cycle of protein biosynthesis. In this article, we present that (i) before and after translocation, fragments of domain V between helices H70/H71 and H74/H89 do not have to interact with nucleotides 72-76 of the acceptor arm of A-site tRNA; (ii) helix H69 does not have to interact with DHU arm of tRNA in positions 25 and 26 after forming the peptide bond, but before translocation; (iii) helices H69 and H70 interact weakly with nucleotides 11, 12, 25, and 26 of A-site tRNA before forming a peptide bond in the ribosome; (iv) interactions between helices H80, H93 and single-stranded region between helices H92 and H93 and CCAend of P-site tRNA are necessary at all steps of elongation cycle; and (v) before and after translocation, helix H89 does not have to interact with nucleotides in positions 64-65 and 50-53 of A-site tRNA TPsiC arm.  相似文献   

9.
Optical rotatory dispersion of E. coli ribosomes and their constituents   总被引:3,自引:0,他引:3  
Investigations have been made on the optical rotatory dispersion properties of E. coli ribosomes and their constituent RNA and proteins. The results indicate that (1) no conformational changes are involved in the formation of a 70S particle from the 50S and 308 subunits, (2) the E. coli ribosomal proteins are similar to most globular proteins with little α-helix content, and (3) the conformation of RNA and proteins inside the ribosome is very similar to that in the free state.  相似文献   

10.
11.
The rRNA N-glycosidase activities of the catalytically active A chains of the heterodimeric ribosome inactivating proteins (RIPs) ricin and abrin, the single-chain RIPs dianthin 30, dianthin 32, and the leaf and seed forms of pokeweed antiviral protein (PAP) were assayed on E. coli ribosomes. All of the single-chain RIPs were active on E. coli ribosomes as judged by the release of a 243 nucleotide fragment from the 3′ end of 23S rRNA following aniline treatment of the RNA. In contrast, E. coli ribosomes were refractory to the A chains of ricin and abrin. The position of the modification of 23S rRNA by dianthin 32 was determined by primer extension and found to be A2660, which lies in a sequence that is highly conserved in all species.  相似文献   

12.

Key message

Plant RbgA GTPase is targeted to chloroplasts and co-fractionated with chloroplast ribosomes, and plays a role in chloroplast rRNA processing and/or ribosome biogenesis.

Abstract

Ribosome Biogenesis GTPase A (RbgA) homologs are evolutionarily conserved GTPases that are widely distributed in both prokaryotes and eukaryotes. In this study, we investigated functions of chloroplast-targeted RbgA. Nicotiana benthamiana RbgA (NbRbgA) and Arabidopsis thaliana RbgA (AtRbgA) contained a conserved GTP-binding domain and a plant-specific C-terminal domain. NbRbgA and AtRbgA were mainly localized in chloroplasts, and possessed GTPase activity. Since Arabidopsis rbgA null mutants exhibited an embryonic lethal phenotype, virus-induced gene silencing (VIGS) of NbRbgA was performed in N. benthamiana. NbRbgA VIGS resulted in a leaf-yellowing phenotype caused by disrupted chloroplast development. NbRbgA was mainly co-fractionated with 50S/70S ribosomes and interacted with the chloroplast ribosomal proteins cpRPL6 and cpRPL35. NbRbgA deficiency lowered the levels of mature 23S and 16S rRNAs in chloroplasts and caused processing defects. Sucrose density gradient sedimentation revealed that NbRbgA-deficient chloroplasts contained reduced levels of mature 23S and 16S rRNAs and diverse plastid-encoded mRNAs in the polysomal fractions, suggesting decreased protein translation activity in the chloroplasts. Interestingly, NbRbgA protein was highly unstable under high light stress, suggesting its possible involvement in the control of chloroplast ribosome biogenesis under environmental stresses. Collectively, these results suggest a role for RbgA GTPase in chloroplast rRNA processing/ribosome biogenesis, affecting chloroplast protein translation in higher plants.
  相似文献   

13.
Protein synthesis across kingdoms involves the assembly of 70S (prokaryotes) or 80S (eukaryotes) ribosomes on the mRNAs to be translated. 70S ribosomes are protected from degradation in bacteria during stationary growth or stress conditions by forming dimers that migrate in polysome profiles as 100S complexes. Formation of ribosome dimers in Escherichia coli is mediated by proteins, namely the ribosome modulation factor (RMF), which is induced in the stationary phase of cell growth. It is reported here a similar ribosomal complex of 110S in eukaryotic cells, which forms during nutrient starvation. The dynamic nature of the 110S ribosomal complex (mammalian equivalent of the bacterial 100S) was supported by the rapid conversion into polysomes upon nutrient-refeeding via a mechanism sensitive to inhibitors of translation initiation. Several experiments were used to show that the 110S complex is a dimer of nontranslating ribosomes. Cryo-electron microscopy visualization of the 110S complex revealed that two 80S ribosomes are connected by a flexible, albeit localized, interaction. We conclude that, similarly to bacteria, rat cells contain stress-induced ribosomal dimers. The identification of ribosomal dimers in rat cells will bring new insights in our thinking of the ribosome structure and its function during the cellular response to stress conditions.  相似文献   

14.
The effect of protein moiety on the conformation of 16S and 23S RNA of the E.coli ribosome has been studied by circular dichroic spectroscopy. Both rRNAs possess a comparable net content of ordered secondary structure which remains unchanged after association with ribosomal proteins into “core” particles or into complete 30S and 50S subunits, respectively. However, differences found in the stability and the cooperativity of melting of free and protein-associated rRNAs imply protein-caused variations in the distribution of the intramolecular hairpin stems and loops and/or changes in long range tertiary interactions which appear to be different for both rRNAs. While 23S RNA is maximally stabilized on the large subunit by the full set of proteins, 16S RNA on the complete small subunit shows lower stability but higher cooperativity in melting.  相似文献   

15.
Ribosome biogenesis is a complex process involving multiple factors. Here, we show that the widely conserved RNA chaperone Hfq, which can regulate sRNA‐mRNA basepairing, plays a critical role in rRNA processing and ribosome assembly in Escherichia coli. Hfq binds the 17S rRNA precursor and facilitates its correct processing and folding to mature 16S rRNA. Hfq assists ribosome assembly and associates with pre‐30S particles but not with mature 30S subunits. Inactivation of Hfq strikingly decreases the pool of mature 70S ribosomes. The reduction in ribosome levels depends on residues located in the distal face of Hfq but not on residues found in the proximal and rim surfaces which govern interactions with the sRNAs. Our results indicate that Hfq‐mediated regulation of ribosomes is independent of its function as sRNA‐regulator. Furthermore, we observed that inactivation of Hfq compromises translation efficiency and fidelity, both features of aberrantly assembled ribosomes. Our work expands the functions of the Sm‐like protein Hfq beyond its function in small RNA‐mediated regulation and unveils a novel role of Hfq as crucial in ribosome biogenesis and translation.  相似文献   

16.
O'Brien TW 《IUBMB life》2003,55(9):505-513
Mammalian mitochondrial ribosomes (55S) differ unexpectedly from bacterial (70S) and cytoplasmic ribosomes (80S), as well as other kinds of mitochondrial ribosomes. Typical of mammalian mitochondrial ribosomes, the bovine mitochondrial ribosome has been developed as a model system for the study of human mitochondrial ribosomes, to address several questions related to the structure, function, biosynthesis and evolution of these interesting ribosomes. Bovine mitochondrial ribosomal proteins (MRPs) from each subunit have been identified and characterized with respect to individuality and electrophoretic properties, amino acid sequence, topographic disposition, RNA binding properties, evolutionary relationships and reaction with affinity probes of ribosomal functional domains. Several distinctive properties of these ribosomes are being elucidated, including their antibiotic susceptibility and composition. Human mitochondrial ribosomes lack several of the major RNA stem structures of bacterial ribosomes but they contain a correspondingly higher protein content (as many as 80 proteins), suggesting a model where proteins have replaced RNA structural elements during the evolution of these ribosomes. Despite their lower RNA content they are physically larger than bacterial ribosomes, because of the 'extra' proteins they contain. The extra proteins in mitochondrial ribosomes are 'new' in the sense that they are not homologous to proteins in bacterial or cytoplasmic ribosomes. Some of the new proteins appear to be bifunctional. All of the mammalian MRPs are encoded in nuclear genes (a separate set from those encoding cytoplasmic ribosomal proteins) which are evolving more rapidly than those encoding cytoplasmic ribosomal proteins. The MRPs are imported into mitochondria where they assemble coordinately with mitochondrially transcribed rRNAs into ribosomes that are responsible for translating the 13 mRNAs for essential proteins of the oxidative phosphorylation system.  相似文献   

17.
The direct assays on Biacore with immobilised RRF and purified L11 from E. coli in the flow trough have shown unspecific binding between the both proteins. The interaction of RRF with GTPase domain of E. coli ribosomes, a functionally active complex of L11 with 23S r RNA and L10.(L7/L12)4 was studied by Biacore. In the experiments of binding of RRF with 30S, 50S and 70S ribosomes from E. coli were used the antibiotics thiostrepton, tetracycline and neomycin and factors, influencing the 70S dissociation Mg2+, NH4Cl, EDTA. The binding is strongly dependent from the concentrations of RRF, Mg2+, NH4Cl, EDTA and is inhibited by thiostrepton. The effect is most specific for 50S subunits and indicates that the GTPase centre can be considered as a possible site of interaction of RRF with the ribosome. We can consider an electrostatic character of the interactions with most probable candidate 16S and 23S r RNA at the interface of 30S and 50S ribosomal subunits.  相似文献   

18.
The conserved signal recognition particle targets ribosomes synthesizing presecretory proteins to the endoplasmic reticulum membrane. Key to the activity of SRP is its ability to bind the ribosome at distant locations, the signal sequence exit and elongation factor-binding sites. These contacts are made by the S and Alu domains of SRP, respectively. We tested earlier secondary structure predictions of the Saccharomyces cerevisiae SRP RNA, scR1, and provide and test a consensus structure. The structure contains four non-conserved insertions, helices 9-12, into the core SRP RNA fold, and an extended helix 7. Using a series of scR1 mutants lacking part or all of these structural elements, we find that they are important for the RNA in both function and assembly of the RNP. About 20% of the RNA, corresponding to the outer regions of these helices, is dispensable for function. Further, we examined the role of several features within the S-domain section of the core, helix 5, and find that its length and flexibility are important for proper SRP function and become essential in the absence of helix 10, 11 and/or 7 regions. Overall, the genetic data indicate that regions of scR1 distant in both primary sequence and secondary structure have interrelated roles in the function of the complex, and possibly mediate communication between Alu and S domains during targeting.  相似文献   

19.
The UPF0054 protein family is highly conserved with homologues present in nearly every sequenced bacterium. In some bacteria, the respective gene is essential, while in others its loss results in a highly pleiotropic phenotype. Despite detailed structural studies, a cellular role for this protein family has remained unknown. We report here that deletion of the Escherichia coli homologue, YbeY, causes striking defects that affect ribosome activity, translational fidelity and ribosome assembly. Mapping of 16S, 23S and 5S rRNA termini reveals that YbeY influences the maturation of all three rRNAs, with a particularly strong effect on maturation at both the 5′‐ and 3′‐ends of 16S rRNA as well as maturation of the 5′‐termini of 23S and 5S rRNAs. Furthermore, we demonstrate strong genetic interactions between ybeY and rnc (encoding RNase III), ybeY and rnr (encoding RNase R), and ybeY and pnp (encoding PNPase), further suggesting a role for YbeY in rRNA maturation. Mutation of highly conserved amino acids in YbeY, allowed the identification of two residues (H114, R59) that were found to have a significant effect in vivo. We discuss the implications of these findings for rRNA maturation and ribosome assembly in bacteria.  相似文献   

20.
During exposure to certain stresses, bacteria dimerize pairs of 70S ribosomes into translationally silent 100S particles in a process called ribosome hibernation. Although the biological roles of ribosome hibernation are not completely understood, this process appears to represent a conserved and adaptive response that contributes to optimal survival during stress and post-exponential-phase growth. Hibernating ribosomes are formed by the activity of one or more highly conserved proteins; gammaproteobacteria produce two relevant proteins, ribosome modulation factor (RMF) and hibernation promoting factor (HPF), while most Gram-positive bacteria produce a single, longer HPF protein. Here, we report the formation of 100S ribosomes by an HPF homolog in Listeria monocytogenes. L. monocytogenes 100S ribosomes were observed by sucrose density gradient centrifugation of bacterial extracts during mid-logarithmic phase, peaked at the transition to stationary phase, and persisted at lower levels during post-exponential-phase growth. 100S ribosomes were undetectable in bacteria carrying an hpf::Himar1 transposon insertion, indicating that HPF is required for ribosome hibernation in L. monocytogenes. Additionally, epitope-tagged HPF cosedimented with 100S ribosomes, supporting its previously described direct role in 100S formation. We examined hpf mRNA by quantitative PCR (qPCR) and identified several conditions that upregulated its expression, including carbon starvation, heat shock, and exposure to high concentrations of salt or ethanol. Survival of HPF-deficient bacteria was impaired under certain conditions both in vitro and during animal infection, providing evidence for the biological relevance of 100S ribosome formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号