首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Era is an essential protein in Escherichia coli which binds both GTP and GDP and has an intrinsic GTPase activity. Studies on the role of GTP/GDP binding and GTPase activity in an attempt to understand its function lead to the observation that Era is autophosphorylated. The autophosphorylated reaction is specific for GTP and cannot use ATP as a phosphoryl group donor. The reaction velocity is of first order with respect to protein concentration, suggesting an intramolecular mechanism. Autophosphorylation occurs at serine and threonine residues. The major phosphorylated tryptic peptide isolated after autophosphorylation has been identified as ISITSR, from residue 33 to 38. The peptide contains the site of phosphorylation and two potential sites for serine and threonine phosphorylation. Subsequently, both the threonine residue at position 36 and the serine residue at position 37 were altered to alanine. The double mutant Era, but not individual single mutants, was unable to functionally complement the growth of an E. coli strain which cannot produce wild-type Era protein at high temperature. This suggests that either threonine 36 or serine 37 has to exist for the function of Era In vivo. phosphorylation of Era was also examined by two-dimensional gel electrophoresis. Era has been previously assigned two distinct positions having two different X-Y co-ordinates: one of the spots (H032.0) was identified as phosphorylated Era, indicating that a substantial portion of Era in the cell is indeed phosphorylated. Therefore, Era autophosphorylation is likely to play an important physiological role in the cell. The sequence encoding the C-terminus previously published had a missing C between A900 and GgO1. As a resuit of the frameshift, Era consists of 301 residues, 15 fewer than originaiiy reported.  相似文献   

2.
YsxC is a small GTPase of Bacillus subtilis with essential but still unknown function, although recent works have suggested that it might be involved in ribosome biogenesis. Here, purified YsxC overexpressed in Escherichia coli was found to be partly associated with high-molecular-weight material, most likely rRNA, and thus eluted from gel filtration as a large complex. In addition, purification of ribosomes from an E. coli strain overexpressing YsxC allowed the copurification of the YsxC protein. Purified YsxC was shown to bind preferentially to the 50S subunit of B. subtilis ribosomes; this interaction was modulated by nucleotides and was stronger in the presence of a nonhydrolyzable GTP analogue than with GTP. Far-Western blotting analysis performed with His6-YsxC and ribosomal proteins separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that YsxC interacted with at least four ribosomal proteins from the 50S subunit. Two of these putative protein partners were identified by mass spectrometry as L1 and L3, while the third reactive band in the one-dimensional gel contained L6 and L10. The fourth band that reacted with YsxC contained a mixture of three proteins, L7/L12, L23, and L27, suggesting that at least one of them binds to YsxC. Coimmobilization assays confirmed that L1, L6, and L7/L12 interact with YsxC. Together, these results suggest that YsxC plays a role in ribosome assembly.  相似文献   

3.
Chen X  Chen SM  Powell BS  Court DL  Ji X 《FEBS letters》1999,445(2-3):425-430
ERA is an essential GTPase widely conserved in bacteria. Homologues of ERA are also present in higher eukaryotic cells. ERA is involved in bacterial cell cycle control at a point preceding cell division. In order to aid the functional investigation of ERA and to facilitate structure-function studies, we have undertaken the X-ray crystallographic analysis of this protein. Here, we report the purification and crystallization procedures and results. The purified ERA exhibits nucleotide-binding activity and GTP-hydrolytic activity. ERA is one of the very few multi-domain GTPases crystallized to date.  相似文献   

4.
5.
The role of enzyme--substrate interactions for the survival of bacteria in natural biocenoses has been analyzed with the systems "lysozyme-antilysozyme", "histon-antihiston" used as models. The conception of a possible universal mechanism for supporting the circulation of pathogenic and opportunistic microorganisms among eukaryotes, irrespective of their evolutionary status and environment, has been formulated. This mechanism is ensured by the natural resistance of the eukaryotic cells and by persistence factors on the part of the pathogen; as a result, the dynamic system of interactions is formed which facilitates the survival of microorganisms due to their persistence potential. New knowledge thus obtained opens prospects in the study of sanitary and ecological aspects of water biocenoses.  相似文献   

6.
Era is an essential GTPase in Escherichia coli, and Era has been implicated in a number of cellular functions. Homologues of Era have been identified in various bacteria and some eukaryotes. Using the era gene as bait in the yeast two-hybrid system to screen E. coli genomic libraries, we discovered that Era interacts with MazG, a protein of unknown function which is highly conserved among bacteria. The direct interaction between Era and MazG was also confirmed in vitro, being stronger in the presence of GDP than in the presence of GTPgammaS. MazG was characterized as a nucleoside triphosphate pyrophosphohydrolase which can hydrolyze all eight of the canonical ribo- and deoxynucleoside triphosphates to their respective monophosphates and PP(i), with a preference for deoxynucleotides. A mazG deletion strain of E. coli was constructed by replacing the mazG gene with a kanamycin resistance gene. Unlike mutT, a gene for another conserved nucleotide triphosphate pyrophosphohydrolase that functions as a mutator gene, the mazG deletion did not result in a mutator phenotype in E. coli.  相似文献   

7.
A series of acylated phloroglucinols and triketones was synthesized and tested for activity against methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus faecalis (VRE) and multi-drug-resistant Mycobacterium tuberculosis (MDR-TB). A tetra-methylated triketone with a C12 side chain was the most active compound (MIC of around 1.0 μg/ml against MRSA) and was shown to stimulate oxygen consumption by resting cell suspensions, suggesting that the primary target was the cytoplasmic membrane.  相似文献   

8.
Pyrroquinoline quinone-dependent alcohol dehydrogenase (PQQ-ADH) of acetic acid bacteria is a membrane-bound enzyme involved in the acetic acid fermentation by oxidizing ethanol to acetaldehyde coupling with reduction of membranous ubiquinone (Q), which is, in turn, re-oxidized by ubiquinol oxidase, reducing oxygen to water. PQQ-ADHs seem to have co-evolved with the organisms fitting to their own habitats. The enzyme consists of three subunits and has a pyrroloquinoline quinone, 4 heme c moieties, and a tightly bound Q as the electron transfer mediators. Biochemical, genetic, and electrochemical studies have revealed the unique properties of PQQ-ADH since it was purified in 1978. The enzyme is unique to have ubiquinol oxidation activity in addition to Q reduction. This mini-review focuses on the molecular properties of PQQ-ADH, such as the roles of the subunits and the cofactors, particularly in intramolecular electron transport of the enzyme from ethanol to Q. Also, we summarize biotechnological applications of PQQ-ADH as to enantiospecific oxidations for production of the valuable chemicals and bioelectrocatalysis for sensors and fuel cells using indirect and direct electron transfer technologies and discuss unsolved issues and future prospects related to this elaborate enzyme.  相似文献   

9.
S Nadanaciva  J Weber  A E Senior 《Biochemistry》1999,38(24):7670-7677
Beta-Arg-182 in Escherichia coli F1-ATPase (beta-Arg-189 in bovine mitochondrial F1) is a residue which lies close to catalytic site bound nucleotide (Abrahams et al. (1994) Nature 370, 621-628). Here we investigated the role of this residue by characterizing two mutants, betaR182Q and betaR182K. Oxidative phosphorylation and steady-state ATPase activity of purified F1 were severely impaired by both mutations. Catalytic site nucleotide-binding parameters were measured using the fluorescence quench of beta-Trp-331 that occurred upon nucleotide binding to purified F1 from betaR182Q/betaY331W and betaR182K/betaY331W double mutants. It was found that (a) beta-Arg-182 interacts with the gamma-phosphate of MgATP, particularly at catalytic sites 1 and 2, (b) beta-Arg-182 has no functional interaction with the beta-phosphate of MgADP or with the magnesium of the magnesium-nucleotide complex in the catalytic sites, and (c) beta-Arg-182 is directly involved in the stabilization of the catalytic transition state. In these features the role of beta-Arg-182 resembles that of another positively charged residue in the catalytic site, the conserved lysine of the Walker A motif, beta-Lys-155. A further role of beta-Arg-182 is suggested, namely involvement in conformational change at the catalytic site beta-alpha subunit interface that is required for multisite catalysis.  相似文献   

10.
11.
12.
13.
Bacteriocins are ribosomally synthesized antimicrobial peptides produced by microorganisms belonging to different eubacterial taxonomic branches. Most of them are small cationic membrane-active compounds that form pores in the target cells, disrupting membrane potentials and causing cell death. The production of small cationic peptides with antibacterial activity is a defense strategy found not only in bacteria, but also in plants and animals. Bacteriocins are classified according to different criteria by different authors; in this review, we will summarize the principal bacteriocin classifications, highlight their main physical and chemical characteristics, and describe the mechanism of some selected bacteriocins that act at the membrane level.  相似文献   

14.
Zaluzanin C, a substance extracted from several species of the genus Zaluzania (Compositae), has been shown to inhibit protein synthesis in intact HeLa cells preferentially to DNA and RNA synthesis. "In vitro" protein synthesis was also blocked by zaluzanin C and the study of the effects of the drug on resolved model systems indicates that it inhibits enzymic translocation of peptidyl-tRNA specifically.  相似文献   

15.
SGP, a Streptococcus mutans essential GTPase, plays a role in the stress response of the organism. Recently, we proposed that one of the physiological functions of the SGP is the modulation of the GTP/GDP ratio under different growth conditions. In order to further determine the functions of SGP and its possible interactions with other molecules, we carried out immunoprecipitation, SGP binding, and the yeast two-hybrid system analyses. These approaches suggest that SGP may oligomerize and such interactions could be important for the function of this regulatory protein.  相似文献   

16.
AIMS: The minimum inhibitory concentration (MIC) of oregano essential oil (OEO) and two of its principle components, i.e. thymol and carvacrol, against Pseudomonas aeruginosa and Staphylococcus aureus was assessed by using an innovative technique. The mechanism of action of the above substances was also investigated. METHODS AND RESULTS: The applied technique uses 100-well microtitre plate and collects turbidimetric growth data. To produce the inhibition profiles, a wide range of concentrations were tested for each of the three compounds, as well as for carvacrol-thymol mixtures. Following a specific mathematical analysis of the observed inhibition profiles from all compounds, it was suggested that mixtures of carvacrol and thymol gave an additive effect and that the overall inhibition by OEO can be attributed mainly to the additive antimicrobial action of these two compounds. Addition of low amounts of each additive: (a) increased permeability of cells to the nuclear stain EB, (b) dissipated pH gradients as indicated by the CFDA-SE fluorescent probe irrespective of glucose availability and (c) caused leakage of inorganic ions. CONCLUSION: Mixing carvacrol and thymol at proper amounts may exert the total inhibition that is evident by oregano essential oil. Such inhibition is due to damage in membrane integrity, which further affects pH homeostasis and equilibrium of inorganic ions. SIGNIFICANCE AND IMPACT OF THE STUDY: The knowledge of extent and mode of inhibition of specific compounds, which are present in plant extracts, may contribute to the successful application of such natural preservatives in foods, since certain combinations of carvacrol-thymol provide as high inhibition as oregano essential oil with a smaller flavour impact.  相似文献   

17.
Abstract Conditional cold-sensitive mutations in Era, an essential Escherichia coli GTPase, were isolated. Localized random polymerase chain reaction (PCR) mutagenesis employing Taq and T7 DNA polymerases under error prone amplification conditions was exploited to generate mutations in the era gene. A plasmid exchange technique was used to identify conditional cold-sensitive mutations in Era that give rise to defective cell growth below 30 °C. Three recessive missense mutations in Era, N26S, A156D, and E200K, were isolated. All three mutations are located at residues conserved in Era homologues from Streptococcus mutans and Coxiella burnetii .  相似文献   

18.
19.
Rapid and accurate identification of new essential genes in under-studied microorganisms will significantly improve our understanding of how a cell works and the ability to re-engineer microorganisms. However, predicting essential genes across distantly related organisms remains a challenge. Here, we present a machine learning-based integrative approach that reliably transfers essential gene annotations between distantly related bacteria. We focused on four bacterial species that have well-characterized essential genes, and tested the transferability between three pairs among them. For each pair, we trained our classifier to learn traits associated with essential genes in one organism, and applied it to make predictions in the other. The predictions were then evaluated by examining the agreements with the known essential genes in the target organism. Ten-fold cross-validation in the same organism yielded AUC scores between 0.86 and 0.93. Cross-organism predictions yielded AUC scores between 0.69 and 0.89. The transferability is likely affected by growth conditions, quality of the training data set and the evolutionary distance. We are thus the first to report that gene essentiality can be reliably predicted using features trained and tested in a distantly related organism. Our approach proves more robust and portable than existing approaches, significantly extending our ability to predict essential genes beyond orthologs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号