首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The polymer–cobalt(III) complexes, [Co(bpy)(dien)BPEI]Cl3 · 4H2O (bpy = 2,2′‐bipyridine, dien = diethylentriamine, BPEI = branched polyethyleneimine) were synthesized and characterized. The interaction of these complexes with human serum albumin (HSA) and bovine serum albumin (BSA) was investigated under physiological conditions using various physico‐chemical techniques. The results reveal that the fluorescence quenching of serum albumins by polymer–cobalt(III) complexes took place through static quenching. The binding of these complexes changed the molecular conformation of the protein considerably. The polymer–cobalt(III) complex with x = 0.365 shows antimicrobial activity against several human pathogens. This complex also induces cytotoxicity against MCF‐7 through apoptotic induction. However, further studies are needed to decipher the molecular mode of action of polymer–cobalt(III) complex and for its possible utilization in anticancer therapy. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
A notable hysteretic effect has been observed in the interaction of Co(II) with human serum albumin (HSA) or bovine serum albumin (BSA) using UV-Visible spectrometry at physiological pH (7.43), which shows that the binding between Co(II) and HSA or BSA may induce a slow transition of HSA or BSA from the conformation of weaker affinity for Co(II) to one of stronger affinity (A-B transition). The rate constants and activation parameters of this transition were measured and are discussed. It is inferred that such a conformation transition may occur due to the binding of the first Co(II) ion with the peptide segment of N-terminal residues 1-3, which results in a 'hinged movement' of the relatively hydrophobic 'valley' in the IA subdomain. This process leads to a slow conformational transition in the albumins, makes the other binding sites of Co(II) exposed, and shows a positive cooperativity effect. The LMCT (ligand-to-metal charge transition) bands of the Co(II)-HSA and Co(II)-BSA systems also show a kind of hypochromic effect featuring a dipole-dipole interaction mechanism. This phenomenon is rarely reported.  相似文献   

3.
4.
In this work, binding interactions of artemisinin (ART) and dihydroartemisinin (DHA) with human serum albumin (HSA) and bovine serum albumin (BSA) were investigated thoroughly to illustrate the conformational variation of serum albumin. Experimental results indicated that ART and DHA bound strongly with the site I of serum albumins via hydrogen bond (H-bond) and van der Waals force and subsequently statically quenched the intrinsic fluorescence of serum albumins through concentration-dependent manner. The quenching abilities of two drugs on the intrinsic fluorescence of HSA were much higher than the quenching abilities of two drugs on the intrinsic fluorescence of BSA. Both ART and DHA, especially DHA, caused the conformational variation of serum albumins and reduced the α-helix structure content of serum albumins. DHA with hydrophilic hydroxyl group bound with HSA more strongly, suggesting the important roles of the chemical polarity and the hydrophilicity during the binding interactions of two drugs with serum albumins. These results reveal the molecular understanding of binding interactions between ART derivatives and serum albumins, providing vital information for the future application of ART derivatives in biological and clinical areas.  相似文献   

5.
The objective of this investigation is examination of the dominant forces that govern complex formation between a series of monoclonal antibodies directed against O6-ethyl-2'-deoxyguanosine. These monoclonal antibodies (coded as ER-6, ER-3, and EM-1) provide the basis for a thermodynamic comparative evaluation of the potentially different forces that stabilize the various monoclonal antibody (mAb) alkylated nucleoside complexes. The binding affinities of ER-6, ER-3, and EM-1 are measured in terms of specific (O6-ethyl-2'-deoxyguanosine, or O6-EtdGuo) and nonspecific (O6-methyl-2'-deoxyguanosine, or O6-MedGuo) antigens, under a variety of experimental conditions, including pH, sodium chloride addition, 1-propanol addition, and temperature, via a nitrocellulose affinity filter assay. The binding isotherms were analyzed via a least-squares routine fit to a two independent binding sites model. The temperature dependence of the van't Hoff enthalpies for the specific O6-EtdGuo interaction ranges from -15.18 to -18.60 kcal mol-1, while for O6-MedGuo the range was extended from -2.72 to -20.66 kcal mol-1. The standard and unitary entropies were negative for those mAb interactions with O6-EtdGuo as well as for ER-6/O6-MedGuo complex formation. However, it was found that the interactions between ER-3 and EM-1 with O6-MedGuo led to decidedly positive entropic values. These results indicate two different dominant forces at work in complex stabilization. The interaction of the three mAb's with their specific antigen, as well as ER-6/O6-MedGuo interaction (nonspecific), may well be controlled by van der Waals type forces, while ER-3 and EM-1 interactions with nonspecific antigen imply formal charge neutralization electrostatics as the dominant force.  相似文献   

6.
A series of substituted phenanthridine derivatives has been synthesized by converting the amines at the 3- and 8-positions of ethidium bromide into guanidine, pyrrole, urea, and various substituted ureas. The resulting derivatives exhibit unique spectral properties that change upon binding nucleic acids. The compounds were analyzed for their ability to inhibit the HIV-1 Rev-Rev Response Element (RRE) interaction, as well as for their affinity to calf thymus DNA. One derivative (3,8-bis-urea-ethylenediamine-5-ethyl-6-phenylphenanthridinium trifuroracetate) has an enhanced affinity and specificity for HIV-1 RRE as compared to ethidium bromide. These results indicate that the nucleic acid affinity and specificity of an intercalating agent can be tuned by synthetic modification of its exocyclic amines.  相似文献   

7.
8.
Serum albumins being the most abundant proteins in the blood and cerebrospinal fluid are significant carriers of essential transition metal ions in the human body. Studies of copper (II) complexes have gained attention because of their potential applications in synthetic, biological, and industrial processes. Study of binding interactions of such bioinorganic complexes with serum albumins improves our understanding of biomolecular recognition process essential for rational drug design. In the present investigation, we have applied quantitative approach to explore interactions of novel synthesized copper (II) complexes viz. [Cu(L1)(L2)ClO4] (complex I), [Cu(L2)(L3)]ClO4] (complex II) and [Cu(L4)2(H2O)2] (complex III) with bovine serum albumin (BSA) to evaluate their binding characteristics, site and mode of interaction. The fluorescence quenching of BSA initiated by complexation has been observed to be static in nature. The binding interactions are endothermic driven by entropic factors as confirmed by high sensitivity isothermal titration calorimetry. Changes in secondary and tertiary structure of protein have been studied by circular dichroism and significant reduction in α-helical content of BSA was observed upon binding. Site marking experiments with warfarin and ibuprofen indicated that copper complexes bind at site II of the protein.  相似文献   

9.
The interaction of pyridoxine (Vitamin B6) with bovine serum albumin (BSA) is investigated under pseudo-physiological conditions by UV–Vis, fluorescence and FTIR spectroscopy. The intrinsic fluorescence of BSA was quenched by VB6, which was rationalized in terms of the static quenching mechanism. According to fluorescence quenching calculations, the bimolecular quenching constant (kq), dynamic quenching (KSV) and static quenching (KLB) at 310 K were obtained. The efficiency of energy transfer and the distance between the donor (BSA) and the acceptor (VB6) were calculated by Foster’s non-radiative energy transfer theory and were equal to 41.1% and 2.11 nm.The collected UV–Vis and fluorescence spectra were combined into a row-and column-wise augmented matrix and resolved by multivariate curve resolution-alternating least squares (MCR-ALS). MCR-ALS helped to estimate the stoichiometry of interactions, concentration profiles and pure spectra for three species (BSA, VB6 and VB6-BSA complex) existed in the interaction procedure. Based on the MCR-ALS results, using mass balance equations, a model was developed and binding constant of complex was calculated using non-linear least squares curve fitting. FT-IR spectra showed that the conformation of proteins was altered in presence of VB6. Finally, the combined docking and molecular dynamics (MD) simulations were used to estimate the binding affinity of VB6 to BSA. Five-nanosecond MD simulations were performed on bovine serum albumin (BSA) to study the conformational features of its ligand binding site. From MD results, eleven BSA snapshots were extracted, at every 0.5 ns, to explore the binding affinity (GOLD score) of VB6 using a docking procedure. MD simulations indicated that there is a considerable flexibility in the structure of protein that affected ligand recognition. Structural analyses and docking simulations indicated that VB6 binds to site I and GOLD score values depend on the conformations of both BSA and ligand. Molecular modeling results showed that VB6–BSA complex formed not only on the basis of electrostatic forces, but also on the basis of π–π staking and hydrogen bond. There was an excellent agreement between the experimental and computational results. The results presented in this paper, will offer a reference for detailed and systematic studies on the biological effects and action mechanism of small molecules with proteins.  相似文献   

10.
11.
Serum albumin, a protein naturally abundant in blood plasma, shows remarkable ligand binding properties of numerous endogenous and exogenous compounds. Most of serum albumin binding sites are able to interact with more than one class of ligands. Determining the protein‐ligand interactions among mammalian serum albumins is essential for understanding the complexity of this transporter. We present three crystal structures of serum albumins in complexes with naproxen (NPS): bovine (BSA‐NPS), equine (ESA‐NPS), and leporine (LSA‐NPS) determined to 2.58 Å (C2), 2.42 Å (P61), and 2.73 Å (P212121) resolutions, respectively. A comparison of the structurally investigated complexes with the analogous complex of human serum albumin (HSA‐NPS) revealed surprising differences in the number and distribution of naproxen binding sites. Bovine and leporine serum albumins possess three NPS binding sites, but ESA has only two. All three complexes of albumins studied here have two common naproxen locations, but BSA and LSA differ in the third NPS binding site. None of these binding sites coincides with the naproxen location in the HSA‐NPS complex, which was obtained in the presence of other ligands besides naproxen. Even small differences in sequences of serum albumins from various species, especially in the area of the binding pockets, influence the affinity and the binding mode of naproxen to this transport protein. Proteins 2014; 82:2199–2208. © 2014 Wiley Periodicals, Inc.  相似文献   

12.
Abstract

For efficient designing of metallodrugs, it is imperative to analyse the binding affinity of those drugs with drug-carrying serum albumins to comprehend their structure–activity correlation for biomedical applications. Here, cobalt(II) and cobalt(III) complexes comprising three phendione ligands, [Co(phendione)3]Cl2 (1) and [Co(phendione)3]Cl3 (2), where, phendione = 1,10-phenanthroline-5,6-dione, has been chosen to contrast the impact of their hydrophobicity and ionicity on binding with bovine serum albumin (BSA) through spectrophotometric titrations. The attained hydrophobicity values using octanol/water partition coefficient method manifested that complex 1 is more hydrophobic than complex 2, which could be attributed to lesser charge on its coordination sphere. The interaction of complexes 1 and 2 with BSA using steady state fluorescence studies revealed that these complexes quench the intrinsic fluorescence of BSA through static mechanism, and the extent of quenching and binding parameters are higher for complex 2. Further thermodynamics of BSA-binding studies revealed that complexes 1 and 2 interact with BSA through hydrophobic and hydrogen bonding/van der Waals interactions, respectively. Further, UV–visible absorption, circular dichroism and synchronous fluorescence studies confirmed the occurrence of conformational and microenvironmental changes in BSA upon binding with complexes 1 and 2. Molecular docking studies have also shown that complex 2 has a higher binding affinity towards BSA as compared to complex 1. This sort of modification of ionicity and hydrophobicity of metal complexes for getting desirable binding mode/strength with drug transporting serum albumins will be a promising pathway for designing active and new kind of metallodrugs for various biomedical applications.

Communicated by Ramaswamy H. Sarma  相似文献   

13.
14.
The conformation of DNA complexes formed with various 3-amino- and 3,8-diamino-phenanthridinium derivatives were examined by CD and fluorescence methods. The CD of these complexes is characterized by major bands in the 300–350-nm and the 400–550-nm regions. The CD properties of the complexes formed with diaminophenanthridinium derivatives suggest that the structure of such complexes is well represented by the intercalation complex formed between DNA and ethidium bromide. The substantial and regular increases in ellipticities near 308 nm that occur with increasing DNA-bound diaminophenanthridinium to DNA phosphate ratios (r) may result from direct interactions between molecules intercalated in neighbouring binding sites. In contrast, the changes in the shape of the CD of DNA complexes of monoaminophenanthridinium derivatives with r and the much lower maximum ellipticities attained suggest that near-neighbor interactions among intercalated monoaminophenanthridinium derivatives occur much less efficiently than in the corresponding diamino complexes, if at all. Although alternative explanations for the differences in the optical properties between the mono- and diaminophenanthridinium complexes of DNA may be offered, such results seem to indicate that complexes formed with monoaminophenanthridinium derivatives are characterized by a conformation which is quite distinct and different from that of the DNA–diaminophenanthridinium complexes. This conclusion is further supported by the considerable increase in fluorescence that accompanies the binding of the diaminophenanthridinium derivatives to DNA as compared to the minor increases, which occur upon the binding of the monoaminophenanthridinium compounds. The importance of conformation as a factor influencing template, function, especially with respect to the RNA polymerase-catalyzed synthesis of RNA, is now well appreciated. Therefore, methods which could provide information readily about changes in the conformation of a template, i.e., as a result of dye intercalation, are expected to facilitate our understanding of the effects of conformational change on the function and activity of templates.  相似文献   

15.
In this work, the terbium(III), dysprosium(III), and ytterbium(III) complexes containing 2, 2′-bipyridine (bpy) ligand have been synthesized and characterized using CHN elemental analysis, FT-IR, UV–Vis and 1H-NMR techniques and their binding behavior with human serum albumin (HSA) was studied by UV–Vis, fluorescence and molecular docking examinations. The experimental data indicated that all three lanthanide complexes have high binding affinity to HSA with effective quenching of HSA fluorescence via static mechanism. The binding parameters, the type of interaction, the value of resonance energy transfer, and the binding distance between complexes and HSA were estimated from the analysis of fluorescence measurements and Förster theory. The thermodynamic parameters suggested that van der Waals interactions and hydrogen bonds play an important role in the binding mechanism. While, the energy transfer from HSA molecules to all these complexes occurs with high probability, the order of binding constants (BpyTb > BpyDy > BpyYb) represents the importance of radius of Ln3+ ion in the complex-HSA interaction. The results of molecular docking calculation and competitive experiments assessed site 3 of HSA, located in subdomain IB, as the most probable binding site for these ligands and also indicated the microenvironment residues around the bound mentioned complexes. The computational results kept in good agreement with experimental data.  相似文献   

16.
Considering that estradiol is a major modulator of prolactin (PRL) secretion, the aim of the present study was to analyze the role of membrane estradiol receptor-α (mERα) in the regulatory effect of this hormone on the PRL secretion induced by thyrotropin-releasing hormone (TRH) by focusing on the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway activation. Anterior pituitary cell cultures from female rats were treated with 17β-estradiol (E(2), 10 nM) and its membrane-impermeable conjugated estradiol (E(2)-BSA, 10 nM) alone or coincubated with TRH (10 nM) for 30 min, with PRL levels being determined by RIA. Although E(2), E(2)-BSA, TRH, and E(2)/TRH differentially increased the PRL secretion, the highest levels were achieved with E(2)-BSA/TRH. ICI-182,780 did not modify the TRH-induced PRL release but significantly inhibited the PRL secretion promoted by E(2) or E(2)-BSA alone or in coincubation with TRH. The PI3K inhibitors LY-294002 and wortmannin partially inhibited the PRL release induced by E(2)-BSA, TRH, and E(2)/TRH and totally inhibited the PRL levels stimulated by E(2)-BSA/TRH, suggesting that the mER mediated the cooperative effect of E(2) on TRH-induced PRL release through the PI3K pathway. Also, the involvement of this kinase was supported by the translocation of its regulatory subunit p85α from the cytoplasm to the plasma membrane in the lactotroph cells treated with E(2)-BSA and TRH alone or in coincubation. A significant increase of phosphorylated Akt was induced by E(2)-BSA/TRH. Finally, the changes of ERα expression in the plasmalemma of pituitary cells were examined by confocal microscopy and flow cytometry, which revealed that the mobilization of intracellular ERα to the plasma membrane of lactotroph cells was only induced by E(2). These finding showed that E(2) may act as a modulator of the secretory response of lactotrophs induced by TRH through mER, with the contribution by PI3K/Akt pathway activation providing a new insight into the mechanisms underlying the nongenomic action of E(2) in the pituitary.  相似文献   

17.
[Pd{(C,N)–C6H4CH2NH(Et) (Qu)] (2) and [Pd{(C,N)–C6H4CH2NH(Et) (Nar)] (3) (Qu = Quercetin, Nar = Naringin) mononuclear palladium (II) complexes have been synthesized and characterized using elemental analysis, IR and electronic spectroscopy. The interaction of the prepared complexes with calf thymus DNA and bovine serum albumin (BSA), monitored by UV–visible and fluorescence titrations, respectively, have been carried out to better understand the mode of their action under biological conditions. Intercalative binding mode between the complexes and DNA is suggested by the binding constant (Kb) values of 2.5 × 106 and 3.2 × 106 for complexes 2 and 3, respectively. In particular, the in vitro cytotoxicity of the complexes on two cancer cells lines (bladder carcinoma TCC and breast cancer MCF7) showed that the compounds had broad spectrum, anti-cancer activity with low IC50 values and the order of in vitro anticancer activities is consistent with the DNA-binding affinities. In the meantime, the quenching of tryptophan emission with the addition of complexes using BSA as a model protein indicated the protein binding ability. The quenching mechanisms of BSA by the complexes were static processes, according to the results obtained. The competitive binding using Warfarin, Digoxin and Ibuprofen site markers, which contain definite biding sites, demonstrated that the complexes bind to site I on BSA. Ultimately, the binding sites of DNA and BSA with the complexes have been determined by molecular modelling studies.  相似文献   

18.
In this work, the interaction between ${\text{Cu}}\left( {{\text{phen}}} \right)_3^{\,\,2 + } In this work, the interaction between Cu(phen)(2+)(3) and bovine serum albumin (BSA) was investigated by fluorescence spectroscopy combined with UV-vis absorption and circular dichroism (CD) spectroscopic techniques under physiological conditions. The fluorescence data proved that the fluorescence quenching of BSA by Cu(phen)(2+)(3) was the result of the Cu(phen)(2+)(3) -BSA complex formation. The binding constants (K (a)) between Cu(phen)(2+)(3) and BSA at four different temperatures were calculated according to the modified Stern-Volmer equation. The enthalpy change (DeltaH) and entropy change (DeltaS) were calculated to be 10.74 kJ mol(-1) and 54.35 J mol(-1) K(-1), respectively, which indicated that electrostatic interactions played a major role in the formation of Cu(phen)(2+)(3) -BSA complex. The distance r between the donor (BSA) and acceptor[Cu(phen)(2+)(3)] was obtained to be 3.55 nm based on F?rster's energy transfer theory. The synchronous fluorescence and CD spectroscopy results showed that the polarity of the residues increased and the lost of the alpha-helix content of BSA (from 59.84 to 53.70%). These indicated that the microenvironment and conformation of BSA were changed in the presence of Cu(phen)(2+)(3).  相似文献   

19.
We synthesized several para-aminophenyl (pap-) mannose-terminated albumins with varying sugar density (Man7-HSA, Man22-HSA, and Man40-HSA) and compared hepatic uptake with (thio-)mannose-terminated bovine serum albumin (Man-43-AI-BSA) The rate of uptake in isolated perfused rat livers was found to be positively correlated with the sugar density (Man40-HSA = Man22-HSA greater than Man7-HSA greater than HSA). Immunohistochemical staining of liver sections showed for both types of neoglycoproteins that uptake occurred in nonparenchymal cells only. Competition experiments with a 500-fold excess of mannan, a known ligand for the mannose/N-acetylglucosamine receptor, that is predominantly localized in endothelial cells, showed complete inhibition of the (thio-)Man43-AI-BSA uptake. In the case of (pap-)mannose-terminated albumins, however, the extent of inhibition by mannan was moderate and decreased markedly with increasing sugar density, being only 20% for (pap-)Man40-HSA. Therefore, we hypothesized that one or more additional removal systems contributed to the clearance of these (pap-)mannose glycoproteins. We found that net negative charge of the (pap-)mannose albumins clearly increased with increasing sugar density, as shown on fast protein liquid chromatography anion-exchange chromatograms. To determine whether the scavenger receptor system that is also mainly present on endothelial cells is involved, we performed competition studies with strongly negatively charged substrates, such as dextran sulfate and formaldehyde-treated human serum albumin (fHSA). An excess of dextran sulfate (500 kDa), indeed blocked the (pap-)mannose-albumin uptake for more than 95%. Dextran sulfate completely inhibited the hepatic uptake of mannan as well, indicating that the polyanion does not discriminate between the scavenger system and the mannose receptor system and should be regarded as an aspecific inhibitor of receptor-mediated endocytotic pathways. Surprisingly, a 500-fold excess of fHSA only moderately (20%) inhibited the clearance of (pap-)Man40-HSA in spite of its high affinity for the scavenger receptor. However, a combination of mannan and fHSA strongly inhibited the uptake of (pap-)Man22-HSA (90%) and to a lesser extent (pap-)Man40-HSA (80%), indicating that a third uptake mechanism may exist that recognizes both mannose groups (or other sugars) and net negative charge. This so far unnoticed receptor system apparently is strongly affected by dextran sulfate and, as shown by immunohistochemistry, is mainly localized on Kupffer cells rather than on the endothelial cells of the liver.  相似文献   

20.
CKS-17, an immunosuppressive peptide homologous to certain retroviral transmembrane envelope protein, has been shown to inhibit lymphocyte proliferation in response to mitogens or alloantigens when covalently attached to bovine serum albumin (CKS-17-BSA). To define its site of action, we determined if CKS-17 conjugated to human serum albumin (CKS-17-HSA) could block the direct activation of lymphocytes by phorbol-12-myristate-13-acetate (PMA) or by a synthetic diacylglycerol, dioctanoylglycerol (DiC8). CKS-17-HSA inhibited lymphocyte proliferation in response to PMA and ionomycin in a dose-dependent manner with up to 88% inhibition occurring with 15 microM CKS-17-HSA. The conjugated peptide also inhibited the proliferation of lymphocytes in response to DiC8 and ionomycin by up to 57% at 15 microM CKS-17-HSA. Based on these findings we investigated the effect of CKS-17-HSA on the activity of protein kinase C (PKC), an enzyme directly activated by PMA and DiC8. PKC was isolated chromatographically from the cytosol of human neutrophils or the human lymphoblastoid cell line Jurkat. CKS-17-HSA caused a dose-dependent enzyme inhibition with a concentration giving half-maximal inhibition (IC50) of ca.3 microM and greater than 95% inhibition at 15 microM CKS-17-HSA. Inhibition of PKC by the conjugated peptide was not reversed by increasing concentrations of Ca2+, Mg2+, phosphatidylserine, diolein, or adenosine triphosphate (ATP), indicating that the conjugated peptide did not function as a chelator or competitive inhibitor. In contrast to its effects on PKC, CKS-17-HSA did not inhibit the activity of adenosine 3':5'-cyclic monophosphate (cyclic AMP)-dependent protein kinase (PK-A) nor the calcium and phospholipid-independent form of PKC (PK-M). Moreover the peptide inhibited in vivo PKC activity in cytosol of intact cells and in membrane of PMA-stimulated cells. These results suggest that the inhibition of lymphocyte proliferation by CKS-17-HSA may be due to the direct inactivation of PKC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号