首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human chromosome fragility   总被引:2,自引:0,他引:2  
Fragile sites are heritable specific chromosome loci that exhibit an increased frequency of gaps, poor staining, constrictions or breaks when chromosomes are exposed to partial DNA replication inhibition. They constitute areas of chromatin that fail to compact during mitosis. They are classified as rare or common depending on their frequency within the population and are further subdivided on the basis of their specific induction chemistry into different groups differentiated as folate sensitive or non-folate sensitive rare fragile sites, and as aphidicolin, bromodeoxyuridine (BrdU) or 5-azacytidine inducible common fragile sites. Most of the known inducers of fragility share in common their potentiality to inhibit the elongation of DNA replication, particularly at fragile site loci. Seven folate sensitive (FRA10A, FRA11B, FRA12A, FRA16A, FRAXA, FRAXE and FRAXF) and two non-folate sensitive (FRA10B and FRA16B) fragile sites have been molecularly characterized. All have been found to represent expanded DNA repeat sequences resulting from a dynamic mutation involving the normally occurring polymorphic CCG/CGG trinucleotide repeats at the folate sensitive and AT-rich minisatellite repeats at the non-folate sensitive fragile sites. These expanded repeats were demonstrated, first, to have the potential, under certain conditions, to form stable secondary non-B DNA structures (intra-strand hairpins, slipped strand DNA or tetrahelical structures) and to present highly flexible repeat sequences, both conditions which are expected to affect the replication dynamics, and second, to decrease the efficiency of nucleosome assembly, resulting in decondensation defects seen as fragile sites. Thirteen aphidicolin inducible common fragile sites (FRA2G, FRA3B, FRA4F, FRA6E, FRA6F, FRA7E, FRA7G, FRA7H, FRA7I, FRA8C, FRA9E, FRA16D and FRAXB) have been characterized at a molecular level and found to represent relatively AT-rich DNA areas, but without any expanded repeat motifs. Analysis of structural characteristics of the DNA at some of these sites (FRA2G, FRA3B, FRA6F, FRA7E, FRA7G, FRA7H, FRA7I, FRA16D and FRAXB) showed that they contained more areas of high DNA torsional flexibility with more highly AT-dinucleotide-rich islands than neighbouring non-fragile regions. These islands were shown to have the potential to form secondary non-B DNA structures and to interfere with higher-order chromatin folding. Therefore, a common fragility mechanism, characterized by high flexibility and the potential to form secondary structures and interfere with nucleosome assembly, is shared by all the cloned classes of fragile sites. From the clinical point of view, the folate sensitive rare fragile site FRAXA is the most important fragile site as it is associated with the fragile X syndrome, the most common form of familial mental retardation, affecting about 1/4000 males and 1/6000 females. Mental retardation in this syndrome is considered as resulting from the abolition of the FMR1 gene expression due to hypermethylation of the gene CpG islands adjacent to the expanded methylated trinucleotide repeat. FRAXE is associated with X-linked non-specific mental retardation, and FRA11B with Jacobsen syndrome. There is also some evidence that fragile sites, especially common fragile sites, are consistently involved in the in vivo chromosomal rearrangements related to cancer, whereas the possible implication of common fragile sites in neuropsychiatric and developmental disorders is still poorly documented.  相似文献   

2.
Fragile sites appear as breaks, gaps, or decondensations on metaphase chromosomes when cells are grown under specific culture conditions. The breaks are nonrandom, appearing in defined, conserved locations throughout the mammalian genome. Common fragile sites, as their name implies, are present in virtually all individuals. With three common fragile sites cloned, their mechanism of expression and the role, if any, they play in human disease are still unclear. We have assembled a BAC contig of >1 Mb across the second most active common fragile site, FRA16D (16q23.2). We fluorescently labeled these BACs and used them as probes on metaphases from aphidicolin-induced lymphocytes and demonstrated that FRA16D decondensation/breakage occurs over a region of at least 1 Mb. Thus, this is the largest common fragile site cloned to date. Microsatellite markers that map within FRA16D show a very high loss in prostate, breast, and ovarian tumors, indicating that loss within this fragile site may be important in the development or progression of these tumors. In addition, a common t(14q32;16q23) translocation is observed in up to 25% of all multiple myelomas (MM). We localized four of four such cloned t(14;16) MM breakpoints within the FRA16D region. This work further demonstrates that the common fragile sites may play an important role in cancer development.  相似文献   

3.
Chromosome breakage and recombination at fragile sites.   总被引:15,自引:0,他引:15       下载免费PDF全文
Chromosomal fragile sites are points on chromosomes that usually appear as nonstaining chromosome or chromatid gaps. It has frequently been suggested that fragile sites may be involved in chromosome breakage and recombination events. We and others have previously shown that fragile sites predispose to intrachromosomal recombination as measured by sister-chromatid exchanges. These findings suggested that fragile site expression often, if not always, is accompanied by DNA strand breakage. In the present report, fragile sites are shown to predispose to deletions and interchromosomal recombination. By use of somatic cell hybrids containing either human chromosome 3 or the fragile X chromosome, deletions and translocations were induced by FUdR or aphidicolin with breakpoints at the fragile sites Xq27 or 3p14.2 (FRA3B) or at points so close to the fragile sites as to be cytogenetically indistinguishable. Southern blot analysis of DNA from a panel of chromosome 3 deletion and translocation hybrids was then utilized to detect loss or retention of markers flanking FRA3B and to corroborate the cytogenetic evidence that the breakpoints were at this fragile site. One cell line with a reciprocal translocation between human chromosome 3 (with breakpoint at 3p14.2) and a hamster chromosome showed cytogenetically that the fragile site was expressed on both derivative chromosomes, supporting the hypothesis that the fragile site represents a repeated sequence. The approach described provides a means of generating specific rearrangements in somatic cell hybrids with a breakpoint at a fragile site.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The common fragile site at chromosomal band 3p14.2 (FRA3B) is the most sensitive single site in the human genome to induced chromosomal lesions. This fragile site may predispose chromosome 3p to breakage that is commonly observed in lung, renal, and many other cancers. We previously used aphidicolin induction of FRA3B expression in a chromosome 3-only somatic cell hybrid to generate a series of hybrids with breakpoints in the 3p14.2 region. These breakpoints were localized to two distinct clusters, separated by 200 kb, that lie on either side of a region of frequent breakage within FRA3B as observed by FISH analysis. Seven proximal aphidicolin-induced breakpoints were localized at or near the end of a THE element. The THE-1 element is flanked by LINE andAlurepetitive elements. The eight distal aphidicolin-induced breakpoints clustered in a region capable of forming multiple hairpin-like structures. Thus repetitive elements and hairpin-like structures may be responsible for chromosome fragility in this region.  相似文献   

5.
AT-rich minisatellites (AT islands) are sites of genomic instability in cancer cells and targets for extremely lethal AT-specific drugs, such as bizelesin. Here we investigated the AT islands in the FRA16B fragile site region for their possible roles in the organization of DNA on the nuclear matrix. The FRA16B AT island nominally spans ~3 kb of mostly >90% A/T DNA. In silico analysis indicates that this domain exhibits characteristics of nuclear matrix attachment regions (MARs): an exceptionally intense computed ‘MAR potential’ and profound duplex destabilization and flexibility. FRA16B repeats specifically bind to isolated nuclear matrices, which indicates their in vitro MAR function. This binding is several-fold greater than that of a known MAR in the c-myc gene. AT islands in fragile sites FRA16B and FRA16D are significantly more abundant in CEM cells that are hypersensitive to bizelesin compared to normal WI-38 cells. FRA16B overabundance in CEM is due to an ~10-fold expansion of FRA16B repeats. The expanded FRA16B minisatellites in CEM cells preferentially localize to the nuclear matrix-associated DNA indicating their in vivo MAR function. The unexpanded repeats in WI-38 cells localize to the loop DNA. The c-myc MAR is also matrix-associated in CEM cells while localizing to loop DNA in WI-38 cells. These results are the first to demonstrate that AT islands in fragile sites can function as MARs both in vitro and in vivo. The ability of FRA16B-mediated MAR sites to rearrange depending on the repeat expansion status could be relevant to both genomic instability of cancer cells and their sensitivity to AT-island targeting drugs.  相似文献   

6.
DNA instability at chromosomal fragile sites in cancer   总被引:3,自引:0,他引:3  
Human chromosomal fragile sites are specific genomic regions which exhibit gaps or breaks on metaphase chromosomes following conditions of partial replication stress. Fragile sites often coincide with genes that are frequently rearranged or deleted in human cancers, with over half of cancer-specific translocations containing breakpoints within fragile sites. But until recently, little direct evidence existed linking fragile site breakage to the formation of cancer-causing chromosomal aberrations. Studies have revealed that DNA breakage at fragile sites can induce formation of RET/PTC rearrangements, and deletions within the FHIT gene, resembling those observed in human tumors. These findings demonstrate the important role of fragile sites in cancer development, suggesting that a better understanding of the molecular basis of fragile site instability is crucial to insights in carcinogenesis. It is hypothesized that under conditions of replication stress, stable secondary structures form at fragile sites and stall replication fork progress, ultimately resulting in DNA breaks. A recent study examining an FRA16B fragment confirmed the formation of secondary structure and DNA polymerase stalling within this sequence in vitro, as well as reduced replication efficiency and increased instability in human cells. Polymerase stalling during synthesis of FRA16D has also been demonstrated. The ATR DNA damage checkpoint pathway plays a critical role in maintaining stability at fragile sites. Recent findings have confirmed binding of the ATR protein to three regions of FRA3B under conditions of mild replication stress. This review will discuss recent advances made in understanding the role and mechanism of fragile sites in cancer development.  相似文献   

7.
8.
WWOX is a gene that spans an extremely large chromosomal region. It is derived from within chromosomal band 16q23.2 which is a region with frequent deletions and other alterations in a variety of different cancers. This chromosomal band also contains the FRA16D common fragile site (CFS). CFSs are chromosomal regions found in all individuals which are highly unstable. WWOX has also been demonstrated to function as a tumor suppressor that is involved in the development of many cancers. Two other highly unstable CFSs, FRA3B (3p14.2) and FRA6E (6q26), also span extremely large genes, FHIT and PARK2, respectively, and these two genes are also found to be important tumor suppressors. There are a number of interesting similarities between these three large CFS genes. In spite of the fact that they are derived from some of the most unstable chromosomal regions in the genome, they are found to be highly evolutionarily conserved and the chromosomal region spanning the mouse homologs of both WWOX and FHIT are also CFSs in mice. Many of the other CFSs also span extremely large genes and many of these are very attractive tumor suppressor candidates. WWOX is therefore a member of a very interesting family of very large CFS genes.  相似文献   

9.
Human chromosomal fragile sites are specific loci that are especially susceptible to DNA breakage following conditions of partial replication stress. They often are found in genes involved in tumorigenesis and map to over half of all known cancer-specific recurrent translocation breakpoints. While their molecular basis remains elusive, most fragile DNAs contain AT-rich flexibility islands predicted to form stable secondary structures. To understand the mechanism of fragile site instability, we examined the contribution of secondary structure formation to breakage at FRA16B. Here, we show that FRA16B forms an alternative DNA structure in vitro. During replication in human cells, FRA16B exhibited reduced replication efficiency and expansions and deletions, depending on replication orientation and distance from the origin. Furthermore, the examination of a FRA16B replication fork template demonstrated that the majority of the constructs contained DNA polymerase paused within the FRA16B sequence, and among the molecules, which completed DNA synthesis, 81% of them underwent fork reversal. These results strongly suggest that the secondary-structure-forming ability of FRA16B contributes to its fragility by stalling DNA replication, and this mechanism may be shared among other fragile DNAs.  相似文献   

10.
Population cytogenetics of folate-sensitive fragile sites   总被引:2,自引:1,他引:1  
Summary The location and frequency of folate-sensitive common fragile sites (CFS) were studied in three populations: (1) 111 mentally retarded children of school age, (2) 240 mentally subnormal children attending special schools, and (3) 85 healthy children attending normal schools. Common fragile sites were found at 54 chromosomal bands including also the band Xq27, where gaps and breaks were detected in 4% of the children. The most frequent CFS were FRA3B (at 3p14.2), FRA6E (at 6q26), and FRA16D (at 16q23) seen in 73%, 65%, and 58% of the individuals totally studied. The frequencies of CFS-positive individuals did not differ among the populations. The variation found in the distribution of CFS among the populations was primarily assumed to be due to sampling differences and study method. The rate of expression of the most frequent CFS varied significantly among the individuals, seeming to suggest that polymorphism exists at those CFS.  相似文献   

11.
The human adenine phosphoribosyltransferase gene (APRT) was mapped with respect to the haptoglobin gene (HP) and the fragile site at 16q23.2 (FRA16D). A subclone of APRT and a cDNA clone of HP were used for molecular hybridization to DNA from mouse-human hybrid cell lines containing specific chromosome 16 translocations. The APRT subclone was used for in situ hybridization to chromosomes expressing FRA16D. APRT was found to be distal to HP and FRA16D and was localized at 16q24, making the gene order cen-FRA16B-HP-FRA16D-APRT-qter.  相似文献   

12.
Common fragile sites (CFSs) are hot spots of chromosomal breakage, and CFS breakage models involve perturbations of DNA replication. Here, we analyzed the contribution of specific repetitive DNA sequence elements within CFSs to the inhibition of DNA synthesis by replicative and specialized DNA polymerases (Pols). The efficiency of in vitro DNA synthesis was quantitated using templates corresponding to regions within FRA16D and FRA3B harboring AT-rich microsatellite and quasi-palindrome (QP) sequences. QPs were predicted to form stems of ~ 75–100% self-homology, separated by 3–9 bases of intervening sequences. Analysis of DNA synthesis progression by human Pol δ demonstrated significant synthesis perturbation both at [A]n and [TA]n repeats in a length-dependent manner and at short (< 40 base pairs) QP sequences. DNA synthesis by the Y-family polymerase κ was significantly more efficient than Pol δ through both types of repetitive elements. Using DNA trap experiments, we show that Pol δ pauses within CFS sequences are sites of enzyme dissociation, and dissociation was observed in the presence of RFC-loaded PCNA. We propose that enrichment of microsatellite and QP elements at CFS regions contributes to fragility by perturbing replication through multiple mechanisms, including replicative Pol pausing and dissociation. Our finding that Pol δ dissociates at specific CFS sequences is significant, since dissociation of the replication machinery and inability to efficiently recover the replication fork can lead to fork collapse and/or formation of double-strand breaks in vivo. Our biochemical studies also extend the potential involvement of Y-family polymerases in CFS maintenance to include polymerase κ.  相似文献   

13.
Common fragile sites (CFSs) are large regions of profound genomic instability found in all individuals. Spanning the center of the two most frequently expressed CFS regions, FRA3B (3p14.3) and FRA16D (16q23.2), are the 1.5 Mb FHIT gene and the 1.0 Mb WWOX gene. These genes are frequently deleted and/or altered in many different cancers. Both FHIT and WWOX have been demonstrated to function as tumor suppressors, both in vitro and in vivo. A number of other large CFS genes have been identified and are also frequently inactivated in multiple cancers. Based on these data, several additional very large genes were tested to determine if they were derived from within CFS regions, but DCC and RAD51L1 were not. However, the 2.0 Mb DMD gene and its immediately distal neighbor, the 1.8 Mb IL1RAPL1 gene are CFS genes contained within the FRAXC CFS region (Xp21.2-->p21.1). They are abundantly expressed in normal brain but were dramatically underexpressed in every brain tumor cell line and xenograft (derived from an intracranial model of glioblastoma multiforme) examined. We studied the expression of eleven other large CFS genes in the same panel of brain tumor cell lines and xenografts and found reduced expression of multiple large CFS genes in these samples. In this report we show that there is selective loss of specific large CFS genes in different cancers that does not appear to be mediated by the relative instability within different CFS regions. Further, the inactivation of multiple large CFS genes in xenografts and brain tumor cell lines may help to explain why this type of cancer is highly aggressive and associated with a poor clinical outcome.  相似文献   

14.
The neurobeachin gene spans the common fragile site FRA13A   总被引:3,自引:0,他引:3  
Common fragile sites are normal constituents of chromosomal structure prone to chromosomal breakage. In humans, the cytogenetic locations of more than 80 common fragile sites are known. The DNA at 11 of them has been defined and characterized at the molecular level. According to the Genome Database, the common fragile site FRA13A maps to chromosome band 13q13.2. Here, we identify the precise genomic position of FRA13A, and characterize the genetic complexity of the fragile DNA sequence. We show that FRA13A breaks are limited to a 650 kb region within the neurobeachin (NBEA) gene, which genomically spans approximately 730 kb. NBEA encodes a neuron-specific multidomain protein implicated in membrane trafficking that is predominantly expressed in the brain and during development.  相似文献   

15.
Previously, the allelic expansion of a 33-bp AT-rich minisatellite repeat has been reported to cause FRA16B, a distamycin A-inducible fragile site. Here, we identified a novel 35-bp minisatellite repeat at FRA16B in a Japanese carrier. The nucleotide sequence of the 35-bp minisatellite was highly AT-rich and nearly identical to the 33-bp one but with insertion of two nucleotides, thymine and adenine. The copy number of the AT-rich minisatellite was 21 in total in the carrier, while only a few copies of the 33-bp minisatellite were present in a non-carrier Japanese subject. These results suggest that the molecular mechanism involved in the allelic expansion of the minisatellite repeat in FRA16B recognizes both minisatellites, the 33-bp one and the 35-bp one, as an amplicon. These observations were different from the ones at folate-sensitive fragile sites, where the CCG triplet repeat was commonly involved in the allelic expansion. Although a slight reduction in AT content (95% > 90%) in the region of minisatellite expansion in the carrier subject was observed, both AT-content and length of the highly AT-rich region seem to play important roles in the cytogenetic expression of the distamycin A-inducible fragile site. In another normal subject, without fragile site expression, allelic expansion involving the 33-bp minisatellite was observed, and the length of the AT-rich DNA region was increased up to approximately 1000 bp. Since the length of the AT-rich minisatellite region was increased up to approximately 1,100-bp in the carrier subject, the threshold length for the cytogenetic expression of the AT-rich DNA region may be between about 1,000-bp and 1,100-bp.  相似文献   

16.
Dynamic mutations in human genes result from unstable trinucleotide repeats embedded within the transcribed region. The changeable nature of these mutations from generation to generation is in contrast to the static inheritance of other single-gene mutational events, e.g. point mutations, deletions, insertions and inversions, typically associated with Mendelian inheritance patterns. Intergenerational instability of dynamic mutations within families has provided an explanation for the genetic anticipation, leading to increasing severity or earlier age of onset in successive generations, associated with certain inherited disorders. While models for genomic instability presume that trinucleotide repeat expansion results from disruption of the DNA replication process, experimental evidence has not yet been obtained in support of this contention. Nevertheless, examples of unstable trinucleotide repeats continue to increase, although not all are associated with a specific phenotype. Five disorders resulting from small-scale expansions of CAG repeats within the protein-coding region are known: spinobulbar muscular atrophy, Huntington’s disease, spinocerebellar ataxia type 1, dentatorubral-pallidoluysian atrophy (DRPLA) and Machado-Joseph disease. A sixth disorder, Haw River syndrome, is allelic to DRPLA. Five folate-sensitive chromosomal fragile sites characterized to date, viz. FRAXA, FRAXE, FRAXF, FRA11B and FRA16A, all have large-scale CGG repeat expansion. Two disorders, fragile X syndrome and FRAXE mental retardation, result from instability of CGG repeats in the 5’ untranslated region ofFMR1 andF M R2 genes respectively. FRA11B lies close to chromosome 1 1q deletion endpoints in many Jacobsen syndrome patients and may be related to the deletion event producing partial aneuploidy for 1lq. Expansion of FRAXF and FRA16A has not been associated with a phenotype. Myotonic dystrophy results from a large-scale CTG expansion in the 3’ untranslated region of the myotonin protein kinase gene while Friedreich’s ataxia has recently been found to have a large-scale GAA repeat in the first intron ofX25. This article reviews the characteristics of trinucleotide repeat disorders and summarizes current understanding of the molecular pathophysiology.  相似文献   

17.
Two members of the KOX gene family, ZNF23 (KOX16) and ZNF32 (KOX30), have been mapped by in situ hybridization to chromosome regions 16q22 and 10q23-q24, respectively. The map location of ZNF23 and ZNF32 placed these zinc finger protein genes near to chromosome loci that, under certain in vitro conditions, are expressed as fragile sites (FRA16B, FRA16C) and (FRA10D, FRA10A, FRA10B and FRA10E). Human zinc finger gene ZNF32 maps to a chromosome region on 10q23-24 in which deletions have been observed associated with malignant lymphoma on 10q22-23 and with carcinoma of the prostate on 10q24. ZNF23 is located on 16q22 in a chromosomal region that has been involved in chromosome alterations characteristic of acute myeloid leukemia. A second Kox zinc finger gene (ZNF19/KOX12) was recently mapped to the same chromosome region on human chromosome 16q22. In the analogous murine position, the murine zinc finger genes Zfp-1 and Zfp-4 are found in the syntenic 16q region of mouse chromosome 8. Thus, ZNF19 and ZNF23 might be members of an evolutionarily conserved zinc finger gene cluster located on human chromosome 16q22.  相似文献   

18.
The fragile site, FRA16B, at 16q22.100 and four different translocations with breakpoints at 16q22.102, 16q22.105, 16q22.108, and 16q22.3 were used to locate and order DNA probes. This was achieved by Southern analysis of a somatic cell hybrid panel containing portions of chromosome 16 and by in situ hybridization. The anonymous DNA fragments D16S6, D16S10, and D16S11 were proximal to FRA16B and located at 16q13----q22.100. D16S4 and LCAT were located at 16q22.100----q22.102. TAT and HP were located at 16q22.105----q22.108. CTRB was located distal to 16q22.105 and therefore is in the distal half of 16q22. The order of markers in this region was determined as centromere-D16S6, D16S11, D16S10, MT-FRA16B-D16S4, LCAT-HP,TAT,CTRB-APRT- telomere. Linkage studies to determine map distances between the closest markers flanking the fragile site are now in progress.  相似文献   

19.
Common fragile sites (CFS) are specific chromosomal areas prone to form gaps and breaks when cells are exposed to stresses that affect DNA synthesis, such as exposure to aphidicolin (APC), an inhibitor of DNA polymerases. The APC-induced DNA damage is repaired primarily by homologous recombination (HR), and RAD51, one of the key players in HR, participates to CFS stability. Since another DNA repair pathway, the mismatch repair (MMR), is known to control HR, we examined the influence of both the MMR and HR DNA repair pathways on the extent of chromosomal damage and distribution of CFS provoked by APC and/or by RAD51 silencing in MMR-deficient and -proficient colon cancer cell lines (i.e., HCT-15 and HCT-15 transfected with hMSH6, or HCT-116 and HCT-116/3+6, in which a part of a chromosome 3 containing the wild-type hMLH1 allele was inserted). Here, we show that MMR-deficient cells are more sensitive to APC-induced chromosomal damage particularly at the CFS as compared to MMR-proficient cells, indicating an involvement of MMR in the control of CFS stability. The most expressed CFS is FRA16D in 16q23, an area containing the tumour suppressor gene WWOX often mutated in colon cancer. We also show that silencing of RAD51 provokes a higher number of breaks in MMR-proficient cells with respect to their MMR-deficient counterparts, likely as a consequence of the combined inhibitory effects of RAD51 silencing on HR and MMR-mediated suppression of HR. The RAD51 silencing causes a broader distribution of breaks at CFS than that observed with APC. Treatment with APC of RAD51-silenced cells further increases DNA breaks in MMR-proficient cells. The RNAi-mediated silencing of PARP-1 does not cause chromosomal breaks or affect the expression/distribution of CFS induced by APC. Our results indicate that MMR modulates colon cancer sensitivity to chromosomal breaks and CFS induced by APC and RAD51 silencing.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号