首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sixty‐four sequences containing lectin domains with homologs of known three‐dimensional structure were identified through a search of mycobacterial genomes. They appear to belong to the β‐prism II, the C‐type, the Microcystis virdis (MV), and the β‐trefoil lectin folds. The first three always occur in conjunction with the LysM, the PI‐PLC, and the β‐grasp domains, respectively while mycobacterial β‐trefoil lectins are unaccompanied by any other domain. Thirty heparin binding hemagglutinins (HBHA), already annotated, have also been included in the study although they have no homologs of known three‐dimensional structure. The biological role of HBHA has been well characterized. A comparison between the sequences of the lectin from pathogenic and nonpathogenic mycobacteria provides insights into the carbohydrate binding region of the molecule, but the structure of the molecule is yet to be determined. A reasonable picture of the structural features of other mycobacterial proteins containing one or the other of the four lectin domains can be gleaned through the examination of homologs proteins, although the structure of none of them is available. Their biological role is also yet to be elucidated. The work presented here is among the first steps towards exploring the almost unexplored area of the structural biology of mycobacterial lectins. Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

2.
Functional analyses of the tRNA:(guanine 26, N2,N2)-dimethyltransferase (Trm1) have been hampered by a lack of structural information about the enzyme and by low sequence similarity to better studied methyltransferases. Here we used computational methods to detect novel homologs of Trm1, infer the evolutionary relationships of the family, and predict the structure of the Trm1 methyltransferase. The N-terminal region of the protein is predicted to form an S-adenosylmethionine-binding domain, which harbors the active site. The C-terminal region is rich in predicted alpha-helices and, in analogy to other nucleic acid methyltransferases, may constitute the target recognition domain of the enzyme. Interposing these two domains, most Trm1 homologs possess a highly variable inserted sequence that is delimited by a Cys4 cluster, likely forming a Zn-finger structure. The residues of Trm1 predicted to participate in cofactor binding, target recognition, and catalysis, were mapped onto a preliminary structural model, providing a platform for designing new experiments to better understand the molecular functions of this protein family. In addition, identification of novel, atypical Trm1 homologs suggests candidates for cloning and biochemical characterization.  相似文献   

3.
Huntingtin (Htt) mutation causes Huntington's disease.Sequence analysis of Htt revealed apossible thrombin cleavage site in the N-terminal region of Htt.In order to investigate if thrombin can eleaveHtt,we expressed the N-terminal fragment (1-969) of wild-type (wt) Htt (Htt 1-969) in MCF-7 cells andstudied its cleavage pattern by thrombin in vitro.An expression plasmid pcDNA3-Htt-18Q-969 was used totransfect MCF-cells and Htt 1-969 expression was confirmed with immunofluorescence.Cell lysates wereincubated with thrombin (1 U/ml, 10 U/ml,and 30 U/ml) for 1 h in the presence or absence of hirudin,athrombin inhibitor.Htt fragments were separated by sodium dodecylsulfate-polyacrylamide gel electrophoresis(SDS-PAGE) and detected with anti-Htt antibodies. An Htt fragment with molecular mass of approximately80 kDa was produced after incubation with thrombin.The size of this Htt fragment was anticipated bymolecular mass generated from thrombin-mediated cleavage at the amino acid 183 in the Htt.Production ofan 80 kDa fragment was inhibited by hirudin. This study provides the first evidence that Htt is cleaved bythrombin in vitro at amino acid 183.If endogenous thrombin cleaves Htt in vivo,the physiological significanceof thrombin-mediated cleavage of Htt should be further investigated.  相似文献   

4.
Huntington's disease (HD) is a genetic neurodegenerative disease characterized by an exceedingly high number of contiguous glutamine residues in the translated protein, huntingtin (Htt). The primary site of cell toxicity is the nucleus, but mitochondria have been identified as key components of cell damage. The present work has been carried out in immortalized lymphocytes from patients with HD. These cells, in comparison with lymphoid cells from healthy subjects, displayed: i) a redistribution of mitochondria, forming large aggregates; ii) a constitutive hyperpolarization of mitochondrial membrane; and iii) a constitutive alteration of mitochondrial fission machinery, with high apoptotic susceptibility. Moreover, mitochondrial fission molecules, e.g., protein dynamin-related protein 1, as well as Htt, associated with mitochondrial raft-like microdomains, glycosphingolipid-enriched structures detectable in mitochondria. These findings, together with the observation that a ceramide synthase inhibitor and a raft disruptor are capable of impairing the peculiar mitochondrial remodeling in HD cells, suggest that mitochondrial alterations occurring in these cells could be due to raft-mediated defects of mitochondrial fission/fusion machinery.  相似文献   

5.
Get3 in yeast or TRC40 in mammals is an ATPase that, in eukaryotes, is a central element of the GET or TRC pathway involved in the targeting of tail‐anchored proteins. Get3 has also been shown to possess chaperone holdase activity. A bioinformatic assessment was performed across all domains of life on functionally important regions of Get3 including the TRC40‐insert and the hydrophobic groove essential for tail‐anchored protein binding. We find that such a hydrophobic groove is much more common in bacterial Get3 homologs than previously appreciated based on a directed comparison of bacterial ArsA and yeast Get3. Furthermore, our analysis shows that the region containing the TRC40‐insert varies in length and methionine content to an unexpected extent within eukaryotes and also between different phylogenetic groups. In fact, since the TRC40‐insert is present in all domains of life, we suggest that its presence does not automatically predict a tail‐anchored protein targeting function. This opens up a new perspective on the function of organellar Get3 homologs in plants which feature the TRC40‐insert but have not been demonstrated to function in tail‐anchored protein targeting. Our analysis also highlights a large diversity of the ways Get3 homologs dimerize. Thus, based on the structural features of Get3 homologs, these proteins may have an unexplored functional diversity in all domains of life.   相似文献   

6.
Many proteins with novel functions were created by exon shuffling around the time of the metazoan radiation. Phospholipase C-gamma (PLC-gamma) is typical of proteins that appeared at this time, containing several different modules that probably originated elsewhere. To gain insight into both PLC-gamma evolution and structure-function relationships within the Drosophila PLC-gamma encoded by small wing (sl), we cloned and sequenced the PLC-gamma homologs from Drosophila pseudoobscura and D. virilis and compared their gene structure and predicted amino acid sequences with PLC-gamma homologs in other animals. PLC-gamma has been well conserved throughout, although structural differences suggest that the role of tyrosine phosphorylation in enzyme activation differs between vertebrates and invertebrates. Comparison of intron positions demonstrates that extensive intron loss has occurred during invertebrate evolution and also reveals the presence of conserved introns in both the N- and C-terminal PLC-gamma SH2 domains that are present in SH2 domains in many other genes. These and other conserved SH2 introns suggest that the SH2 domains in PLC-gamma are derived from an ancestral domain that was shuffled not only into PLC-gamma, but also into many other unrelated genes during animal evolution.  相似文献   

7.
Qi Y  Grishin NV 《Proteins》2005,58(2):376-388
Protein structure classification is necessary to comprehend the rapidly growing structural data for better understanding of protein evolution and sequence-structure-function relationships. Thioredoxins are important proteins that ubiquitously regulate cellular redox status and various other crucial functions. We define the thioredoxin-like fold using the structure consensus of thioredoxin homologs and consider all circular permutations of the fold. The search for thioredoxin-like fold proteins in the PDB database identified 723 protein domains. These domains are grouped into eleven evolutionary families based on combined sequence, structural, and functional evidence. Analysis of the protein-ligand structure complexes reveals two major active site locations for the thioredoxin-like proteins. Comparison to existing structure classifications reveals that our thioredoxin-like fold group is broader and more inclusive, unifying proteins from five SCOP folds, five CATH topologies and seven DALI domain dictionary globular folding topologies. Considering these structurally similar domains together sheds new light on the relationships between sequence, structure, function and evolution of thioredoxins.  相似文献   

8.
RpfB is multidomain protein that is crucial for Mycobacterium tuberculosis resuscitation from dormancy. This protein cleaves cell wall peptidoglycan, an essential bacterial cell wall polymer formed by glycan chains of β-(1-4)-linked-N-acetylglucosamine (GlcNAc) and N-acetylmuramic acid (MurNAc) cross-linked by short peptide stems. RpfB is structurally complex being composed of five distinct domains, namely a catalytic, a G5 and three DUF348 domains. Here, we have undertaken a combined experimental and computation structural investigations on the entire protein to gain insights into its structure–function relationships. CD spectroscopy and light scattering experiments have provided insights into the protein fold stability and into its oligomeric state. Using the available structure information, we modeled the entire protein structure, which includes the two DUF348 domains whose structure is experimentally unknown, and we analyzed the dynamic behavior of RpfB using molecular dynamics simulations. Present results highlight an intricate mutual influence of the dynamics of the different protein domains. These data provide interesting clues on the functional role of non-catalytic domains of RpfB and on the mechanism of peptidoglycan degradation necessary to resuscitation of M. tuberculosis.  相似文献   

9.
We report here the crystal structure at 2.0 A resolution of the AGR_C_4470p protein from the Gram-negative bacterium Agrobacterium tumefaciens. The protein is a tightly associated dimer, each subunit of which bears strong structural homology with the two domains of the heme utilization protein ChuS from Escherichia coli and HemS from Yersinia enterocolitica. Remarkably, the organization of the AGR_C_4470p dimer is the same as that of the two domains in ChuS and HemS, providing structural evidence that these two proteins evolved by gene duplication. However, the binding site for heme, while conserved in HemS and ChuS, is not conserved in AGR_C_4470p, suggesting that it probably has a different function. This is supported by the presence of two homologs of AGR_C_4470p in E. coli, in addition to the ChuS protein.  相似文献   

10.
Nuclear relocation of normal huntingtin   总被引:3,自引:1,他引:2  
In Huntington's Disease (HD), the huntingtin protein (Htt) includes an expanded polyglutamine domain. Since mutant Htt concentrates in the nucleus of affected neurons, we have inquired whether normal Htt (Q16−23) is also able to access the nucleus. We observe that a major pool of normal full-length Htt of HeLa cells is anchored to endosomes and also detect RNase-sensitive nuclear foci which include a 70-kDa N-terminal Htt fragment. Agents which damage DNA trigger caspase-3-dependent cleavage of Htt and dramatically relocate the 70 kDa fragment to the nucleoplasm. Considering that polyglutamine tracts stimulate caspase activation, mutant Htt is therefore poised to enter the nucleus. These considerations help rationalize the nuclear accumulation of Htt which is characteristic of HD and provide a first example of involvement of caspase cleavage in release of membrane-bound proteins which subsequently enter the nucleus.  相似文献   

11.
Abstract

HDAC6 is a protein involved in cancer, neurodegenerative disease and inflammatory disorders. To date, the full three-dimensional (3D) structure of human HDAC6 has not been elucidated; however, there are some experimental 3D structural homologs to HDAC6 that can be used as templates. In this work, we utilized molecular modeling procedures to model both of the catalytic domains of HDAC6 connected by the linker region where DMB region is placed. Once the 3D structure of human HDAC6 was obtained, it was structurally evaluated and submitted to docking and molecular dynamic (MD) simulations along with Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) method to explore the stability and the binding free energy properties of the HDAC6–ligand complexes. In addition, its structural and energetic behavior was explored with each one of the catalytic domains in the molecular recognition of six selective HDAC6 inhibitors, HPOB, CAY10603, Nexturastat, Rocilinostat, Tubacin and Tubastatin A for DD2, and with the so-called 9-peptide which is DD1–HDAC6 selective substrate. The use of the whole system (DD1–DMB–DD2) showed a tendency toward the ligand affinity of DD2, CAY10603> Tubacin?>?Rocilinostat?> Nexturastat?>?HPOB?>?Tubastatin > 9-peptide, which is in line with experimental reports. However, 9-peptide showed a higher affinity for DD1, which agrees with experimental reports elsewhere. Principal component analysis provided important information about the structural changes linked to the molecular recognition process, whereas per-residue decomposition analysis revealed the energetic contribution of the key residues in the molecular binding and structural characteristics that could assist in drug design.  相似文献   

12.
A natural way to study protein sequence, structure, and function is to put them in the context of evolution. Homologs inherit similarities from their common ancestor, while analogs converge to similar structures due to a limited number of energetically favorable ways to pack secondary structural elements. Using novel strategies, we previously assembled two reliable databases of homologs and analogs. In this study, we compare these two data sets and develop a support vector machine (SVM)-based classifier to discriminate between homologs and analogs. The classifier uses a number of well-known similarity scores. We observe that although both structure scores and sequence scores contribute to SVM performance, profile sequence scores computed based on structural alignments are the best discriminators between remote homologs and structural analogs. We apply our classifier to a representative set from the expert-constructed database, Structural Classification of Proteins (SCOP). The SVM classifier recovers 76% of the remote homologs defined as domains in the same SCOP superfamily but from different families. More importantly, we also detect and discuss interesting homologous relationships between SCOP domains from different superfamilies, folds, and even classes.  相似文献   

13.
Peptidase E (PepE) is a nonclassical serine peptidase with a Ser-His-Glu catalytic triad. It is specific for dipeptides with an N-terminal aspartate residue (Asp-X dipeptidase activity). Its homolog from Listeria monocytogenes (PepElm) has a Ser-His-Asn “catalytic triad.” Based on sequence alignment we predicted that the PepE homolog from Deinococcus radiodurans (PepEdr) would have a Ser-His-Asp “catalytic triad.” We confirmed this by solving the crystal structure of PepEdr to 2.7 Å resolution. We show that PepElm and PepEdr lack the Asp-X dipeptidase activity. Our analyses suggest that absence of P1 pocket in the active site could be the main reason for this lack of typical activity. Sequence and structural data reveal that the PepE homologs can be divided into long and short PepEs based on presence or absence of a C-terminal tail which adopts a β-hairpin conformation in the canonical PepE from Salmonella enterica. A long PepE from Bacillus subtilis with Ser-His-Asp catalytic triad exhibits Asp-X dipeptidase activity. Whereas the three long PepEs enzymatically characterized till date have been found to possess the Asp-X dipeptidase activity, the three enzymatically characterized short PepEs lack this activity irrespective of the nature of their catalytic triads. This study illuminates the structural and functional heterogeneity in the S51 family and also provides structural basis for the functional variability among PepE homologs.  相似文献   

14.
The structural annotation of proteins with no detectable homologs of known 3D structure identified using sequence‐search methods is a major challenge today. We propose an original method that computes the conditional probabilities for the amino‐acid sequence of a protein to fit to known protein 3D structures using a structural alphabet, known as “Protein Blocks” (PBs). PBs constitute a library of 16 local structural prototypes that approximate every part of protein backbone structures. It is used to encode 3D protein structures into 1D PB sequences and to capture sequence to structure relationships. Our method relies on amino acid occurrence matrices, one for each PB, to score global and local threading of query amino acid sequences to protein folds encoded into PB sequences. It does not use any information from residue contacts or sequence‐search methods or explicit incorporation of hydrophobic effect. The performance of the method was assessed with independent test datasets derived from SCOP 1.75A. With a Z‐score cutoff that achieved 95% specificity (i.e., less than 5% false positives), global and local threading showed sensitivity of 64.1% and 34.2%, respectively. We further tested its performance on 57 difficult CASP10 targets that had no known homologs in PDB: 38 compatible templates were identified by our approach and 66% of these hits yielded correctly predicted structures. This method scales‐up well and offers promising perspectives for structural annotations at genomic level. It has been implemented in the form of a web‐server that is freely available at http://www.bo‐protscience.fr/forsa .  相似文献   

15.
Huntington disease (HD) is an autosomal inherited disorder that causes the deterioration of brain cells. The polyglutamine (polyQ) expansion of huntingtin (Htt) is implicated in the pathogenesis of HD via interaction with an RNA splicing factor, Htt yeast two-hybrid protein A/forming-binding protein 11 (HYPA/FBP11). Besides the pathogenic polyQ expansion, Htt also contains a proline-rich region (PRR) located exactly in the C terminus to the polyQ tract. However, how the polyQ expansion influences the PRR-mediated protein interaction and how this abnormal interaction leads to the biological consequence remain elusive. Our NMR structural analysis indicates that the PRR motif of Htt cooperatively interacts with the tandem WW domains of HYPA through domain chaperoning effect of WW1 on WW2. The polyQ-expanded Htt sequesters HYPA to the cytosolic location and then significantly reduces the efficiency of pre-mRNA splicing. We propose that the toxic gain-of-function of the polyQ-expanded Htt that causes dysfunction of cellular RNA processing contributes to the pathogenesis of HD.  相似文献   

16.
Titin is a large filamentous protein that spans half a sarcomere, from Z‐disk to M‐line. The N2A region within the titin molecule exists between the proximal immunoglobulin (Ig) region and the PEVK region and protein–protein interactions involving this region are required for normal muscle function. The N2A region consists of four Ig domains (I80–I83) with a 105 amino acid linker region between I80 and I81 that has a helical nature. Using chemical stability measurements, we show that predicted differences between the adjacent Ig domains (I81–I83) correlate with experimentally determined differences in chemical stability and refolding kinetics. Our work further shows that I83 has the lowest ΔGunfolding, which is increased in the presence of calcium (pCa 4.3), indicating that Ca2+ plays a role in stabilizing this immunoglobulin domain. The characteristics of N2A's three Ig domains provide insight into the stability of the binding sites for proteins that interact with the N2A region. This work also provides insights into how Ca2+ might influence binding events involving N2A.  相似文献   

17.
The structure of the human gene encoding the mitochondrial outer membrane receptor Tom20 has been determined from overlapping clones obtained using PCR-based techniques. The 20kb human Tom20 gene (hTom20) consists of five exons separated by four introns. The 5' flanking region presents features common with other nuclear genes encoding mitochondrial proteins. Comparison with its homologs and putative homologs in other species has revealed common features in their TPR motifs and other relevant protein domains. Aspects concerning evolutionary origins of the family of processed pseudogenes of hTom20 are also discussed.  相似文献   

18.
19.
Apple scab, caused by the fungal pathogen Venturia inaequalis, is one of the most severe diseases of apple worldwide. It is the most studied plant–pathogen interaction involving a woody species using modern genetic, genomic, proteomic and bioinformatic approaches in both species. Although ‘Geneva’ apple was recognized long ago as a potential source of resistance to scab, this resistance has not been characterized previously. Differential interactions between various monoconidial isolates of V. inaequalis and six segregating F1 and F2 populations indicate the presence of at least five loci governing the resistance in ‘Geneva’. The 17 chromosomes of apple were screened using genotyping‐by‐sequencing, as well as single marker mapping, to position loci controlling the V. inaequalis resistance on linkage group 4. Next, we fine mapped a 5‐cM region containing five loci conferring both dominant and recessive scab resistance to the distal end of the linkage group. This region corresponds to 2.2 Mbp (from 20.3 to 22.5 Mbp) on the physical map of ‘Golden Delicious’ containing nine candidate nucleotide‐binding site leucine‐rich repeat (NBS‐LRR) resistance genes. This study increases our understanding of the complex genetic basis of apple scab resistance conferred by ‘Geneva’, as well as the gene‐for‐gene (GfG) relationships between the effector genes in the pathogen and resistance genes in the host.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号