首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Abstract

The conformational properties of the tetrapeptide Ser1-Pro2-Phe3-Arg4, the C-terminal fragment of the nonapeptide hormone bradykinin, have been studied by circular dichroism and two-dimensional NMR techniques. Measurements of coupling constants, NH temperature dependence rates and nuclear Overhauser effects (performed with rotating frame nuclear Overhauser spectroscopy, ROESY) in H2O and CD3OH/D2O (80/20, v/v) reveal different conformations in the corresponding solvent. In aqueous solution the molecule exists in a random conformation or as an average of several conformations in rapid exchange. In CD3OH/D2O, however, the conformation is well-defined. The backbone of the peptide is extended, and the side-chains of Phe3 and Arg4 exhibit unusual rigidity for a peptide of this size. Evidently, the secondary structure is stabilized by a charge interaction between the guanidino group of Arg4 and the terminal carboxyl group, since experiments at various pH's show clearly that the definition of conformation decreases strongly upon protonation of the carboxyl function. A NH3 +(Ser1)-COO?(Arg4) salt bridge, as well as any form of turn stabilized by hydrogen bonds can be ruled out with certainty.  相似文献   

2.
Abstract

A determination of the solution conformational behavior of two tachykinins, substance P and physalaemin, is described. Two-dimensional homonuclear Hartmann-Hahn (HOHAHA) and rotating-frame cross relaxation spectroscopy (ROESY) are used to obtain complete proton resonance assignments. Interproton distance restraints obtained from ROESY spectroscopy are used to characterize the conformational behavior. These data show that in solution both substance P and physalaemin exist in a mixture of conformational states, rather than as a single three-dimensional structure. In water both peptides prefer to be in an extended chain structure. In methanol, their behavior is described as a mixture of β-turn conformations in dynamic equilibrium. Solvent titration data and chemical shift temperature coefficients complement the NMR estimate of interproton distances by locating hydrogen bonds and serving to identify predominant conformational states. The C-terminal tetrapeptide segment has the same conformational behavior for both substance P and physalaemin. In physalaemin, the midsegment of the peptide may also be constrained by formation of a salt bridge. The conformational behavior of substance P and physalaemin is discussed in relation to potency and receptor binding properties.  相似文献   

3.
Abstract

The solution conformations of two potent antagonists of bradykinin (Arg1-Pro2-Pro3-Gly4- Phe5-Ser6-Pro7-Phe8-Arg9), [Aca-1, DArg0, Hyp3, Thi5, DPhe7,(N-Bzl)Gly8]BK (1) and [Aaa- 1, DArg0, Hyp3, Thi5,(2-DNal)7, Thi8]BK (2), were studied by using 2D NMR spectroscopy in DMSO-dg and molecular dynamics simulations. The NMR spectra of peptide 1 reveals the existence of at least two isomers arising from isomerization across the DPhe7-(N-Bzl)Gly8peptide bond. The more populated isomer possesses the cis peptide bond at this position. The ratio of cis/trans isomers amounted to 7:3. With both antagonists, the NMR data indicate a β-turn structure for the Hyp3-Gly4 residues. In addition, for peptide 2, position 2,3 is likely to be occupied by turn-like structures. The cis peptide bond between DPhe7 and (N- Bzl)Gly8 in analogue 1 suggests type VI β-turn at position 7,8. The molecular dynamics runs were performed on both peptides in DMSO solution. The results indicate that the structure of peptide 1 is characterized by type VIb β-turn comprising residues Ser-Arg9 and the βI or βII-turn involving the Pro2-Thi5 fragment, whereas peptide 2 shows the tendency towards the formation of type I β-turn at position 2,3. The structures of both antagonists are stabilized by a salt bridge between the guanidine moiety of Arg1 and the carboxyl group of Arg9. Moreover, the side chain of DArg0 is apart of the rest of molecule and is not involved in structural elements except for a few calculated structures.  相似文献   

4.
A conformational analysis in water and DMSO of two tachykinin family peptides (scyliorhinin I (ScyI) and scyliorhinin II (ScyII)) was carried out by 1D and 2D NMR (DQF-COSY, TOCSY, HMQC, HMBC, NOESY and ROESY) and molecular dynamics calculation methods. In DMSO, two groups of conformations (major and minor) were obtained for both peptides based on the experimental data. The conformations proposed for ScyI represent a folded structure, which shows certain similarities to the structures reported for other NK-1 and NK-2 tachykinin agonists. In water ScyII displays a flexible, extended structure, whereas in DMSO the structure is more compact and, in the fragment from the centre to the C-terminus, several -turns may be present.  相似文献   

5.
Summary A conformational analysis in water and DMSO of two tachykinin family peptides (scyliorhinin I (ScyI) and scyliorhinin II (ScyII)) was carried out by 1D and 2D NMR (DQF-COSY, TOCSY, HMQC, HMBC, NOESY and ROESY) and molecular dynamics calculation methods. In DMSO, two groups of conformations (major and minor) were obtained for both peptides based on the experimental data. The conformations proposed for ScyI represent a folded structure, which shows certain similarities to the structures reported for other NK-1 and NK-2 tachykinin agonists. In water ScyII displays a flexible, extended structure, whereas in DMSO the structure is more compact and, in the fragment from the centre to the C-terminus, several β-turns may be present.  相似文献   

6.
Abstract

The conformational behavior in solution of two receptor selective tachykinin agonists, senktide (succiny1-D-F-MeF-G-L-M-NH2) and septide (pQ-F-F-P-L-M-NH2) is described. Two dimensional cross relaxation NMR spectroscopy is used together with coupling constant data to obtain interproton distance constraints. These results are used in conjunction with semi-empirical energy computations to indicate favorable conformations. Senktide is found to have a high degree of conformational order which is attributed to rotational restriction associated with the N-methylation of phenylalanine. The lowest energy conformation in accord with the experimental interproton distances contains a β-turn. Interproton distances indicate that septide exists as a random coil or in an extended chain conformation. Energy computations suggest that septide is primarily an extended chain with internal reorientation restricted by the proline residue. These results may be related to the selectivity of these peptides for different receptors, in that the analogs, with conformations more stable than tachykinins, are more receptor selective.  相似文献   

7.
Capturing conformational changes in proteins or protein-protein complexes is a challenge for both experimentalists and computational biologists. Solution nuclear magnetic resonance (NMR) is unique in that it permits structural studies of proteins under greatly varying conditions, and thus allows us to monitor induced structural changes. Paramagnetic effects are increasingly used to study protein structures as they give ready access to rich structural information of orientation and long-range distance restraints from the NMR signals of backbone amides, and reliable methods have become available to tag proteins with paramagnetic metal ions site-specifically and at multiple sites. In this study, we show how sparse pseudocontact shift (PCS) data can be used to computationally model conformational states in a protein system, by first identifying core structural elements that are not affected by the environmental change, and then computationally completing the remaining structure based on experimental restraints from PCS. The approach is demonstrated on a 27 kDa two-domain NS2B-NS3 protease system of the dengue virus serotype 2, for which distinct closed and open conformational states have been observed in crystal structures. By changing the input PCS data, the observed conformational states in the dengue virus protease are reproduced without modifying the computational procedure. This data driven Rosetta protocol enables identification of conformational states of a protein system, which are otherwise difficult to obtain either experimentally or computationally.  相似文献   

8.
Abstract

The Substance P fragment Arg1Pro2-Lys3-Pro4 (SP1–4) has been extensively investigated by means of proton nuclear magnetic resonance at 400 MHz. The combined application of different 2D techniques and a comparison of SP1–4 with its derivative SPM-amide allowed the complete and unambiguous assignment of the proton NMR spectrum. Conformational data obtained from the different NMR parameters are compared with theoretical calculations. The results suggest that SP1–4 exists, at the chosen experimental conditions, as a stretched molecule.  相似文献   

9.
Abstract

Three N-terminal fragments of the neurotransmitter Substance P as well as two antagonist heptapeptides containing D-amino-acid residues were studied using different ID and 2D NMR techniques. Total nonexchangeable 1H-NMR assignments were carried out in D2O and the NH protons were assigned in H2O by means of COSY experiments. The spectral data indicates that there are no preferred conformations for the backbone. The N-terminal tetrapeptide SP1–4-OH exists as a mixture of cis/trans isomers and this effect was studied as a function of pH.  相似文献   

10.
Isakova  N. A.  Alieva  I. N.  Godjaev  N. M. 《Molecular Biology》2004,38(4):582-589
The three-dimensional organization and conformational properties of NmU-8 neuropeptide and its modified analogs have been studied by modeling and compared with the available data on their biological activity. The effect of single amino acids substitutions on conformational states of the native neuropeptide is discussed. The low-energy conformations responsible for its contractile activity have been revealed.  相似文献   

11.
Abstract: Chinese hamster ovary cells expressing the N -glycosylated substance P (NK-1) receptor were treated with the glycosylation inhibitor tunicamycin and photolabeled with 125I-Bolton-Hunter- p -benzoyl- l -phenylalanine8-substance P. Two radioactive proteins of Mr 80,000 and 46,000, representing the glycosylated and nonglycosylated substance P (NK-1) receptor, respectively, were observed. The IC50 for the inhibition of photolabeling of both receptor forms was 0.3 ± 0.1 n M for substance P and 30 ± 5 n M for neurokinin A (substance K). Thus, glycosylation of the substance P (NK-1) receptor has no detectable effect on the affinity of the substance P (NK-1) receptor for substance P or neurokinin A (substance K).  相似文献   

12.
Substance P (SP) is one of the target neurotransmitters associated with diseases related to chronic inflammation, pain and depression. The selective receptor for SP, NK(1)R is located in the heterogeneous microdomains or caveolae in membrane. Gangliosides, specifically GM1, are markers of these heterogeneous sites. Also, gangliosides are considered as important regulatory elements in cell-cell recognition and cell signaling. In the present work, we describe the conformations of Substance P in the presence of ternary membrane systems containing GM1 at the physiological concentration. SP is mostly unstructured in water, but appears as extended 3(10) helical or turn III in isotropic bicelles, more pronounced in the presence of GM1. NMR results suggest that, in the GM1 containing bicelles, the peptide is more inserted into the membrane with its C-terminus, while N-terminus lies close to the membrane-water interface. The NMR-derived conformation of SP in GM1 bicelles is docked on homology modeled NK(1)R and resulting interactions satisfy reported mutagenesis, fluorescence, photo-affinity labeling and modeling data. The results highlight efficacy of GM1 in membrane in providing structure in an otherwise flexible neurotransmitter Substance P; thus providing indication that it may be useful also for other neurotransmitter peptides/proteins associated with membrane.  相似文献   

13.
P物质的免疫调节作用   总被引:16,自引:0,他引:16  
P物质在外周主要分布于了发出细传入的神经元内。在外周神经末梢释放的P物质参与免疫调节和炎症过程。P物质可以影响淋巴细胞的增殖、免疫球蛋白和细胞因子的合成,并能够调节辅佐细胞的活性和细胞因子的合成以及其他一些免疫细胞的活性。P物质通过以上作用参与调节细胞和体液免疫应答。在外周组织中,P物质能的神经纤维和一些免疫细胞联系密切,许多免疫细胞膜上存在有P物质的特异性受体。这些形态学资料为P物质参与免疫调节提供了证据。一些免疫细胞也能够产生P物质,并以自分泌或/和旁分泌的方式调节免疫细胞的功能。以上资料表明P物质不仅是一种神经肽,也是一种免疫调节因子,是神经系统和免疫系统共同的信使物质。  相似文献   

14.
Abstract

High-field proton magnetic resonance measurements at 400 MHz and 600 MHz allowed the evaluation of the preferred conformations of a leukotriene antagonist, FPL-55712. The experiments involved an analysis of proton-proton coupling constants, longitudinal relaxation time data and nuclear Overhauser effect experiments. The NMR parameters confirm the conformational features expected from X-ray and microwave data for related substances, such as rotational freedom about C14—C15 and C15—C16, synperiplanar arrangements for C7—C8—O—C14 and C16—O—C17—C18 and segmental motion in the propyl side chains.  相似文献   

15.
Synthesis of Substance P   总被引:3,自引:0,他引:3  
SUBSTANCE P has been synthesized by the solid-phase procedure of Merrifield1,2 according to the sequence H-Arg-Pro-LysPro-Gln-Gln-Phe-Phe-Gly-Leu-Met-NH2 reported in the previous letter.  相似文献   

16.
Lactophoricin (LPcin), a component of proteose peptone (113–135) isolated from bovine milk, is a cationic amphipathic antimicrobial peptide consisting of 23 amino acids. We designed a series of N- or C-terminal truncated variants, mutated analogs, and truncated mutated analogs using peptide-engineering techniques. Then, we selected three LPcin analogs of LPcin-C8 (LPcin-YK1), LPcin-T2WT6W (LPcin-YK2), and LPcin-T2WT6W-C8 (LPcin-YK3), which may have better antimicrobial activities than LPcin, and successfully expressed them in E. coli with high yield. We elucidated the 3D structures and topologies of the three LPcin analogs in membrane environments by conducting NMR structural studies. We investigated the purity of the LPcin analogs and the α-helical secondary structures by performing 1H-15N 2D HSQC and HMQC-NOESY liquid-state NMR spectroscopy using protein-containing micelle samples. We measured the 3D structures and tilt angles in membranes by conducting 15N 1D and 2D 1H-15N SAMMY type solid-state NMR spectroscopy with an 800 MHz in-house-built 1H-15N double-resonance solid-state NMR probe with a strip-shield coil, using protein-containing large bicelle samples aligned and confirmed by molecular-dynamics simulations. The three LPcin analogs were found to be curved α-helical structures, with tilt angles of 55–75° for normal membrane bilayers, and their enhanced activities may be correlated with these topologies.  相似文献   

17.
Three exorphins, beta-casomorphin-5, morphiceptin and its D-Pro4 analog, were studied in DMSO by means of 1H and 13C NMR spectroscopy, with the aim of detecting conformational features of potential biological significance for the mu opioid activity since the presence of two Pro residues restricts the accessible conformational space more than in all other peptides. It is found that the conformational mixtures present in solution contain relevant fractions of folded conformers, a feature that assures the observation of four different Tyr OH signals in the 500 MHz spectrum of morphiceptin. The conformer distribution of (very active) (D-Pro4)-morphiceptin is different from those of its (less active) congeners.  相似文献   

18.
Abstract

A high-field 1H and 31P-NMR study of the oligomer d[CpGp ApTpCpG]2 was carried out in H22O and water signal suppression was employed in all 1H NMR acquisitions. Particular attention was given to imino proton and 31P assignments. Two dimensional 31P-1H shift correlation contours were particularly useful in 31P assignments and confirming previous 1H assignments. Titrimetric addition of aliquots of the anticancer agent mitoxantrone resulted in selective and progressive chemical shifts with critical changes at stoichiometrics of 1:1 and 2:1 drug to DNA ratios. The results indicate ultimate intercalative binding of the drug at both C.G termini of the oligomer in accord with the previously determined C.G preference and with non-nearest neighbor intercalation.  相似文献   

19.
Cytochrome P450 enzymes are versatile catalysts involved in a wide variety of biological processes from hormonal regulation and antibiotic synthesis to drug metabolism. A hallmark of their versatility is their promiscuous nature, allowing them to recognize a wide variety of chemically diverse substrates. However, the molecular details of this promiscuity have remained elusive. Here, we have utilized two-dimensional heteronuclear single quantum coherence NMR spectroscopy to examine a series of mutants site-specific labeled with the unnatural amino acid, [13C]p-methoxyphenylalanine, in conjunction with all-atom molecular dynamics simulations to examine substrate and inhibitor binding to CYP119, a P450 from Sulfolobus acidocaldarius. The results suggest that tight binding hydrophobic ligands tend to lock the enzyme into a single conformational substate, whereas weak binding low affinity ligands bind loosely in the active site, resulting in a distribution of localized conformers. Furthermore, the molecular dynamics simulations suggest that the ligand-free enzyme samples ligand-bound conformations of the enzyme and, therefore, that ligand binding may proceed largely through a process of conformational selection rather than induced fit.  相似文献   

20.
Abstract

The conformation of the C-terminal octapeptide fragment of Substance P (SP4-11, Pro-GlnGln-Phe-Phe-Gly-Leu-Met-NH2) has been investigated by 2D-NMR and MD methods. The octapeptide exists in a blend of conformations. The molecule seems to shuttle between conformations with y-bends either at Phe5 or Gly6 or Gln3 or Leu7 and between a nearly extended structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号