首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The conformational dynamics of human serum albumin (HSA) was investigated by principal component analysis (PCA) applied to three molecular dynamics trajectories of 200 ns each. The overlap of the essential subspaces spanned by the first 10 principal components (PC) of different trajectories was about 0.3 showing that the PCA based on a trajectory length of 200 ns is not completely convergent for this protein. The contributions of the relative motion of subdomains and of the subdomains (internal) distortion to the first 10 PCs were found to be comparable. Based on the distribution of the first 3 PC, 10 protein conformers are identified showing relative root mean square deviations (RMSD) between 2.3 and 4.6 Å. The main PCs are found to be delocalized over the whole protein structure indicating that the motions of different protein subdomains are coupled. This coupling is considered as being related to the allosteric effects observed upon ligand binding to HSA. On the other hand, the first PC of one of the three trajectories describes a conformational transition of the protein domain I that is close to that experimentally observed upon myristate binding. This is a theoretical support for the older hypothesis stating that changes of the protein onformation favorable to binding can precede the ligand complexation. A detailed all atoms PCA performed on the primary Sites 1 and 2 confirms the multiconformational character of the HSA binding sites as well as the significant coupling of their motions. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 561–572, 2014.  相似文献   

2.
Adenosine receptor antagonists are generally based on heterocyclic core structures presenting substituents of various volumes and chemical-physical profiles. Adenine and purine-based adenosine receptor antagonists have been reported in literature. In this work we combined various substituents in the 2, 6, and 8-positions of 9-ethylpurine to depict a structure-affinity relationship analysis at the human adenosine receptors. Compounds were rationally designed trough molecular modeling analysis and then synthesized and evaluated at radioligand binding studies at human adenosine receptors. The new compounds showed affinity for the human adenosine receptors, with some derivatives endowed with low nanomolar Ki data, in particular at the A2AAR subtype. The purine core proves to be a versatile core structure for the development of novel adenosine receptor antagonists with nanomolar affinity for these membrane proteins.  相似文献   

3.
A comparison is made between a 200-ps molecular dynamics simulation in vacuum and a normal mode analysis on the protein bovine pancreatic trypsin inhibitor (BPTI) in order to elucidate the dual aspects of harmonicity and anharmonicity in the dynamics of proteins. The molecular dynamics trajectory is analyzed using principal component analysis, an effective harmonic analysis suited for comparison with the results from the normal mode analysis. The results suggest that the first principal component shows qualitatively different behavior from higher principal components and is associated with apparent barrier crossing events on an anharmonic conformational energy surface. The higher principal components appear to have probability distributions that are well approximated by Gaussians, indicating harmonicity. Eliminating the contribution from the first principal component reveals a great deal of correspondence between the 2 methods. This correspondence, however, involves a factor of 2, as the variances of the distribution of the higher principal components are, on average, roughly twice those found from the normal mode analysis. A model is proposed to reconcile these results with those from previous analyses.  相似文献   

4.
Most p53 mutations associated with cancer are located in its DNA binding domain (DBD). Many structures (X‐ray and NMR) of this domain are available in the protein data bank (PDB) and a vast conformational heterogeneity characterizes the various free and complexed states. The major difference between the apo and the holo‐complexed states appears to lie in the L1 loop. In particular, the conformations of this loop appear to depend intimately on the sequence of DNA to which it binds. This conclusion builds upon recent observations that implicate the tetramerization and the C‐terminal domains (respectively TD and Cter) in DNA binding specificity. Detailed PCA analysis of the most recent collection of DBD structures from the PDB have been carried out. In contrast to recommendations that small molecules/drugs stabilize the flexible L1 loop to rescue mutant p53, our study highlights a need to retain the flexibility of the p53 DNA binding surface (DBS). It is the adaptability of this region that enables p53 to engage in the diverse interactions responsible for its functionality. Proteins 2016; 84:1443–1461. © 2016 Wiley Periodicals, Inc.  相似文献   

5.
6.
Molecular dynamics (MD) simulations coupled with principal component (PC) analysis were carried out to study functional roles of Mg2+ binding to extracellular signal-regulated kinase 2 (ERK2). The results suggest that Mg2+ binding heavily decreases eigenvalue of the first principal component and totally inhibits motion strength of ERK2, which favors stabilization of ERK2 structure. Binding free energy predictions indicate that Mg2+ binding produces an important effect on binding ability of adenosine triphosphate (ATP) to ERK2 and strengthens the ATP binding. The calculations of residue-based free energy decomposition show that lack of Mg2+ weakens interactions between the hydrophobic rings of ATP and five residues I29, V37, A50, L105, and L154. Hydrogen bond analyses also prove that Mg2+ binding increases occupancies of hydrogen bonds formed between ATP and residues K52, Q103, D104, and M106. We expect that this study can provide a significant theoretical hint for designs of anticancer drugs targeting ERK2.  相似文献   

7.
In the last few years, many efforts have been made to search for potent and selective human A3 adenosine antagonists. In particular, one of the most promising human A3 adenosine receptor antagonists is represented by the pyrazolo-triazolo-pyrimidine family. This class of compounds has been strongly investigated from the point of view of structure-activity relationships. In particular, it has been observed that fundamental requisites for having both potency and selectivity at the human A3 adenosine receptors are the presence of a small substituent at the N8 position and an unsubstitued phenyl carbamoyl moiety at the N5 position. In this study, we report the role of the N5-bond type on the affinity and selectivity at the four adenosine receptor subtypes. The observed structure-activity relationships of this class of antagonists are also exhaustively rationalized using the recently published ligand-based homology modeling approach.  相似文献   

8.
G-protein-coupled receptors (GPCRs) are membrane proteins that have a wide variety of physiological roles. Adenosine receptors belong to the GPCR family. Adenosine receptors are implicated in many physiological disorders, such as Parkinson's disease, Huntington's disease, inflammatory and immune's disease and many others. Interestingly, crystal structures of the active and inactive conformations of the A2-subtype adenosine receptor (A2AR) have been solved. These two structures could be used to get insights about the conformational changes that occur during the process of activation/inactivation processes of this receptor. Therefore, two ligand-free simulations of the native active (PDB code: 3QAK) and inactive (PDB code: 3EML) conformations of the A2AR and two halo-simulations were carried out to observe the initial conformational changes induced by coupling adenosine to the inactive conformation and caffeine to the active conformation. Furthermore, we constructed an A2AR model that contained four thermostabilising mutations, L48A, T65A, Q89A and A54L, which had previously been determined to stabilise the bound conformation of the agonist, and we ran molecular dynamics simulations of this mutant to investigate how these point mutations might affect the inactive conformation of this receptor. This study provides insights about the initial structural and dynamic features that occur as a result of the binding of caffeine and adenosine in the active and inactive A2AR structures, respectively, as well as the introduction of some mutations on the inactive structure of the A2AR. Moreover, we provide useful and detailed information regarding structural features such as toggle switch and ionic lock during the activation/inactivation processes of this receptor.  相似文献   

9.
The conformational change observed upon ligand binding and phosphorylation for the cAMP-dependent protein kinase (protein kinase A-PKA) is of high importance for the regulation of its activity. We calculate pKa values and net charges for 18 3D structures of PKA in various conformations and liganded states to examine the role of electrostatics in ligand binding and activation. We find that the conformational change of PKA takes place without any significant net proton uptake/release at all pH values, thus indicating that PKA has evolved to reduce any pH-dependent barriers to the conformational motion. We furthermore find that the binding of ligands induces large changes in the net charge of PKA at most pH values, but significantly, we find that the net charge difference at physiological pH is close to zero, thus indicating that the active-site pKa values have been preorganized for substrate binding. We are unable to unequivocally resolve the identity of the groups responsible for determining the pH-activity profile of PKA but speculate that the titration of Lys 168 or the titration of ATP itself could be responsible for the loss of activity at high pH values. Finally, we examine the effect of point mutations on the pKa values of the PKA catalytic residues and find these to be relatively insensitive to both noncharge-altering and charge-altering mutations.  相似文献   

10.
Hinsen K 《Proteins》2006,64(3):795-7; discussion 798-9
The dihedral angle principal component analysis method published recently by Mu, Nguyen, and Stock, is shown to produce distortions of the free energy landscape due to the neglect of constraints in the coordinates. It is further shown that these distortions can create artificial minima and energy barriers. The rugged energy landscape that the authors find for a small peptide chain might thus be an artifact of their method.  相似文献   

11.
Limonene is a major aromatic compound in essential oils extracted from citrus rind. The application of limonene, especially in aromatherapy, has expanded significantly, but its potential effects on cellular metabolism have been elusive. We found that limonene directly binds to the adenosine A2A receptor, which may induce sedative effects. Results from an in vitro radioligand binding assay showed that limonene exhibits selective affinity to A2A receptors. In addition, limonene increased cytosolic cAMP concentration and induced activation of protein kinase A and phosphorylation of cAMP-response element-binding protein in Chinese hamster ovary cells transfected with the human adenosine A2A receptor gene. Limonene also increased cytosolic calcium concentration, which can be achieved by the activation of adenosine A2A receptors. These findings suggest that limonene can act as a ligand and an agonist for adenosine A2A receptors.  相似文献   

12.
Modeling protein flexibility constitutes a major challenge in accurate prediction of protein-ligand and protein-protein interactions in docking simulations. The lack of a reliable method for predicting the conformational changes relevant to substrate binding prevents the productive application of computational docking to proteins that undergo large structural rearrangements. Here, we examine how coarse-grained normal mode analysis has been advantageously applied to modeling protein flexibility associated with ligand binding. First, we highlight recent studies that have shown that there is a close agreement between the large-scale collective motions of proteins predicted by elastic network models and the structural changes experimentally observed upon ligand binding. Then, we discuss studies that have exploited the predicted soft modes in docking simulations. Two general strategies are noted: pregeneration of conformational ensembles that are then utilized as input for standard fixed-backbone docking and protein structure deformation along normal modes concurrent to docking. These studies show that the structural changes apparently "induced" upon ligand binding occur selectively along the soft modes accessible to the protein prior to ligand binding. They further suggest that proteins offer suitable means of accommodating/facilitating the recognition and binding of their ligand, presumably acquired by evolutionary selection of the suitable three-dimensional structure.  相似文献   

13.
The application of principal component analysis to two types of habitat (the benthos of macrophytes and of central river bed) enabled us to single out some of the factors that affect the dynamics and the structure of the oligochaete population and its various reactions to environmental conditions. As regards macrophytes, the distribution of the variables on the basis of the first component is correlated, to a certain extent, with a seasonal factor without any significant differences among sites. The largest population is most closely correlated with the summer months. In fact, we found that the Naididae and Tubificidae species generally develop in larger numbers at higher temperatures. For the Tubificidae, we could detect a precise seasonal cycle. In the central river bed habitat, the first component was correlated with the river discharge, which determines the granulometric characteristics of the sediment; we noticed a correlation among the sites that have the same characteristics, regardless of sampling site or date. The species which correlate most closely among themselves are the Tubificidae Limnodrilus hoffmeisteri, Tubifex tubifex, L. udekemianus and L. profundicola, which are very characteristic of environments that contain abundant organic matter. The second component is correlated with temperature, and hence with the availability of oxygen, which determines the presence and the abundance of more sensitive species.  相似文献   

14.
Protein A chromatography is widely employed for the capture and purification of antibodies and Fc‐fusion proteins. Due to the high cost of protein A resins, there is a significant economic driving force for using these chromatographic materials for a large number of cycles. The maintenance of column performance over the resin lifetime is also a significant concern in large‐scale manufacturing. In this work, several statistical methods are employed to develop a novel principal component analysis (PCA)‐based tool for predicting protein A chromatographic column performance over time. A method is developed to carry out detection of column integrity failures before their occurrence without the need for a separate integrity test. In addition, analysis of various transitions in the chromatograms was also employed to develop PCA‐based models to predict both subtle and general trends in real‐time protein A column yield decay. The developed approach has significant potential for facilitating timely and improved decisions in large‐scale chromatographic operations in line with the process analytical technology (PAT) guidance from the Food and Drug Administration (FDA). Biotechnol. Bioeng. 2011; 108:59–68. © 2010 Wiley Periodicals, Inc.  相似文献   

15.
Laccase belongs to the family of blue multi-copper oxidases and are capable of oxidizing a wide range of aromatic compounds. Laccases have industrial applications in paper pulping or bleaching and hydrocarbon bioremediation as a biocatalyst. We describe the design of a laccase with broader substrate spectrum in bioremediation. The application of evolutionary trace (ET) analysis of laccase at the ligand binding site for optimal design of the enzyme is described. In this attempt, class specific sites from ET analysis were mapped onto known crystal structure of laccase. The analysis revealed 162PHE as a critical residue in structure function relationship studies.  相似文献   

16.
Chemical shift perturbations (CSPs) in NMR spectra provide useful information about the interaction of a protein with its ligands. However, in a multiple‐ligand‐binding system, determining quantitative parameters such as a dissociation constant (Kd) is difficult. Here, we used a method we named CS‐PCA, a principal component analysis (PCA) of chemical shift (CS) data, to analyze the interaction between bovine β‐lactoglobulin (βLG) and 1‐anilinonaphthalene‐8‐sulfonate (ANS), which is a multiple‐ligand‐binding system. The CSP on the binding of ANS involved contributions from two distinct binding sites. PCA of the titration data successfully separated the CSP pattern into contributions from each site. Docking simulations based on the separated CSP patterns provided the structures of βLG–ANS complexes for each binding site. In addition, we determined the Kd values as 3.42 × 10−4M2 and 2.51 × 10−3M for Sites 1 and 2, respectively. In contrast, it was difficult to obtain reliable Kd values for respective sites from the isothermal titration calorimetry experiments. Two ANS molecules were found to bind at Site 1 simultaneously, suggesting that the binding occurs cooperatively with a partial unfolding of the βLG structure. On the other hand, the binding of ANS to Site 2 was a simple attachment without a significant conformational change. From the present results, CS‐PCA was confirmed to provide not only the positions and the Kd values of binding sites but also information about the binding mechanism. Thus, it is anticipated to be a general method to investigate protein–ligand interactions. Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

17.
Fujiwara S  Amisaki T 《Proteins》2006,64(3):730-739
Human serum albumin (HSA) binds with fatty acids under normal physiologic conditions. To date, there is little published information on the tertiary structure of HSA-fatty acid complex in aqueous solution. In the present study, we used molecular dynamics (MD) simulations to elucidate possible structural changes of HSA brought about by the binding of fatty acids. Both unliganded HSA and HSA-fatty acid complex models for MD calculations were constructed based on the X-ray crystal structures. Five myristates (MYRs) were bound in the HSA-fatty acid complex model. In the present MD study, the motion of domains I and III caused by the binding of MYR molecules increased the radius of gyration of HSA. Root-mean-square fluctuations from the MD simulations revealed that the atomic fluctuations of the specific amino acids at drug-binding site I that can regulate the drug-binding affinity were increased by the binding of MYR molecules. Primary internal motions, characterized by the first three principal components, were observed mainly at domains I and III in the principal component analysis for trajectory data. The directional motion projected on the first principal component of unliganded HSA was conserved in HSA-MYR complex as the third principal directional motion with higher frequency. However, the third principal directional motion in unliganded HSA turned into the first principal directional motion with lower frequency in the HSA-MYR complex. Thus, the present MD study provides insights into the possible conformational changes of HSA caused by the binding of fatty acids.  相似文献   

18.
Researchers often use a two-step process to analyze multivariate data. First, dimensionality is reduced using a technique such as principal component analysis, followed by a group comparison using a t-test or analysis of variance. Although this practice is often discouraged, the statistical properties of this procedure are not well understood, starting with the hypothesis being tested. We suggest that this approach might be considering two distinct hypotheses, one of which is a global test of no differences in the mean vectors, and the other being a focused test of a specific linear combination where the coefficients have been estimated from the data. We study the asymptotic properties of the two-sample t-statistic for these two scenarios, assuming a nonsparse setting. We show that the size of the global test agrees with the presumed level but that the test has poor power. In contrast, the size of the focused test can be arbitrarily distorted with certain mean and covariance structures. A simple method is provided to correct the size of the focused test. Data analyses and simulations are used to illustrate the results. Recommendations on the use of this two-step method and the related use of principal components for prediction are provided.  相似文献   

19.
It has been shown that adenosine deaminase (ADA; EC 3.5.4.4) behaves as an ecto-enzyme anchored to membrane proteins, among them A(1) adenosine receptors (A(1)Rs). Bovine ADA interacts with A(1)Rs from many species and regulates agonists binding to receptors in an activity-independent form. However, it was not known whether human ADA exerted any effect on the agonist binding to human A(1)Rs, because of both technical difficulties in obtaining pure human ADA and tissues containing human A(1)Rs. In this study, human ADA was purified to homogeneity. Taking in consideration that A(1)Rs form homodimers and taking advantage of a new procedure to fit binding data to receptors dimers, which allows to calculate ligand dissociation constants and the degree of cooperativity between the two subunits in the dimer, here it is demonstrated that human ADA markedly enhances the agonist and antagonist affinity and abolishes the negative cooperativity on agonist binding to human striatal A(1)Rs. ADA also increases the ability of the agonist to decrease the forskolin-induced cAMP levels. The results show that human ADA, apart from reducing the adenosine concentration and thus preventing A(1)R desensitization, binds to A(1)R behaving as an allosteric effector that markedly enhances agonist affinity and increases receptor functionality. The physiological role of the interaction is to make receptors more sensitive to adenosine. This powerful regulation has important implications for the physiology and pharmacology of neuronal A(1)Rs.  相似文献   

20.
Xueqin Pang  Mingjun Yang  Keli Han 《Proteins》2013,81(8):1399-1410
The A2A adenosine receptor (A2AAR) is a unique G‐protein coupled receptor (GPCR), because besides agonist, its antagonist could also lead to therapeutic relevance. Based on A2AAR‐antagonist crystal structure, we have studied the binding mechanism of two distinct antagonists, ZM241385 and KW6002, and dynamic behaviors of A2AAR induced by antagonist binding. Key residues interacting with both antagonists and residues specifically binding to one of them are identified. ZM241385 specifically bound to S672.65, M1775.38, and N2536.55, while KW6002 binds to F622.60, A813.29, and H2647.29. Moreover, interactions with L1675.28 are found for both antagonists, which were not reported in agonist binding. The dynamic behaviors of antagonist bound holo‐A2AARs were found to be different from the apo‐A2AAR in three typical functional switches, (i) the “ionic lock” was in equilibrium between formation and breakage in apo‐A2AAR, but stayed broken in holo‐A2AARs; (ii) the “rotamer toggle switch,” T883.36/F2426.44/W2466.48, adopted different rotameric conformations in apo‐A2AAR and holo‐A2AARs; (iii) apo‐A2AAR preferred α‐helical intracellular loop (IC)2 and flexible IC3, while holo‐A2AARs had a flexible IC2 and α‐helical IC3. Our results indicated that antagonist binding induced different conformational rearrangements of these characteristic functional switches in apo‐A2AAR and holo‐A2AARs. Proteins 2013; 81:1399–1410. © 2013 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号