首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The interaction of adenosine-5'-monophosphate (5'-AMP), guanosine-5'-monophosphate (5'-GMP) and 2'-deoxyguanosine-5'-monophosphate (5'-dGMP) with the [Co(NH3)6]3+, [Co(NH3)5Cl]2+ and [Co(NH3)4Cl2]+ cations has been investigated in aqueous solution with metal/nucleotide ratios (r) of 1/2, 1 and 2 at neutral pH. The solid complexes have been isolated and characterized by FT-IR and 1H-NMR spectroscopy. The complexes are polymeric in nature both in the crystalline solid and aqueous solution. The binding of the cobalt-hexammine cation is indirectly (via NH3) through the N-7 and the PO3(2-) groups of the AMP and via O-6, N-7 and the PO3(2-) of the GMP and dGMP anions (outer-sphere). The cobalt-pentammine and cobalt-tetrammine bindings are through the phosphate groups (inner-sphere) and the N-7 site (outer-sphere) of these nucleotide anions. The ribose moiety shows C2'-endo/anti conformation, in the free AMP and GMP anions as well as in the cobalt-ammine-AMP complexes, whereas a mixture of teh C2'-endo/anti and C3'-endo/anti sugar puckers were observed for the Co(NH3)6-GMP, Co(NH3)5-GMP and a C3'-endo/anti conformer for the Co(NH3)4-GMP complexes. The deoxyribose showed an O4'-endo/anti conformation for the free dGMP anion and a C3'-endo/anti for the Co(NH3)6-dGMP, Co(NH3)5-dGMP and Co(NH3)4-dGMP complexes.  相似文献   

2.
The interactions of the monovalent ions Li+, Na+, K+, NH4+, Rb+ and Cs+ with adenosine-5'-monophosphoric acid (H2-AMP), guanosine-5'-monophosphoric acid (H2-GMP) and deoxyguanosine-5'-monophosphoric acid (H2-dGMP) were investigated in aqueous solution at physiological pH. The crystalline salts M2-nucleotide.nH2O, where M = Li+, Na+, K+ NH4+, Rb+ and Cs+, nucleotide = AMP, GMP and dGMP anions and n = 2-4 were isolated and characterized by Fourier Transform infrared (FTIR) and 1H-NMR spectroscopy. Spectroscopic evidence showed that these ions are in the form of M(H2O)n+ with no direct metal-nucleotide interaction, in aqueous solution. In the solid state, Li+ ions bind to the base N-7 site and the phosphate group (inner-sphere), while the NH4+ cations are in the vicinity of the N-7 position and the phosphate group, through hydrogen bonding systems. The Na-nucleotides and K-nucleotides are structurally similar. The Na+ ions bind to the phosphate group of the AMP through metal hydration shell (outer-sphere), whereas in the Na2-GMP, the hydrated metal ions bind to the base N-7 or the ribose hydroxyl groups (inner-sphere). The Na2-dGMP contains hydrated metal-carbonyl and metal-phosphate bindings (inner-sphere). The Rb+ and Cs+ ions are directly bonded to the phosphate groups and indirectly to the base moieties (via H2O). The ribose moiety shows C2'-endo/anti conformation for the free AMP acid and its alkali metal ion salts. In the free GMP acid, the ribose ring exhibits C3'-endo/anti conformer, while a C2'-endo/anti sugar pucker was found in the Na2-GMP and K2-GMP salts and a C3'-endo/anti conformation for the Li+, NH4+, Rb+ and Cs+ salts. The deoxyribose has C3'-endo/anti conformation in the free dGMP acid and O4'-endo/anti in the Na2-dGMP, K2-dGMP and a C3'-endo/anti for the Li+, NH4+, Rb+ and Cs+ salts. An equilibrium mixture of the C2'-endo/anti and C3'-endo/anti sugar puckers was found for these metal-nucleotide salts in aqueous solution.  相似文献   

3.
The interactions of cis- and trans-diammineplatinum compounds with 5′-GMP and 5′-dGMP in dilute aqueous solution at neutral pH were investigated by 1H nmr. In addition to the 1:2 Pt nucleotide complexes cis- and trans-Pt(NH3)2(GMP)2, it was possible to study the formation of the 1:1 Pt-nucleotide complexes with either one coordinated water or chloride ion. At 5°C GMP reacts with a stoichiometric amount of cis-diaquodiammine-platinum to yield cis-Pt(NH3)2(GMP) (H2O) as a sole reaction product. From the present results it is concluded that such a complex may play an important role as the initial reaction product between antitumor compounds like cis-Pt(NH3)2Cl2 and guanine in DNA in living organisms. The coupling constant 3J(H(1′)-H(2′)) of the H(1′) sugar proton in cis-Pt(NH3)2(GMP)2 is temperature dependent, indicating a conformational change in the sugar moiety.  相似文献   

4.
5.
H A Tajmir-Riahi 《Biopolymers》1991,31(9):1065-1075
The interaction of the La (III) and Tb (III) ions with adenosine-5'-monophosphate (5'-AMP), guanosine-5'-monophosphate (5'-GMP), and 2'-deoxyguanosine-5'-monophosphate (5'-dGMP) anions with metal/nucleotide ratios of 1 and 2 has been studied in aqueous solution in acidic and neutral pHs. The solid complexes were isolated and characterized by Fourier transform ir and 1H-nmr spectroscopy. The lanthanide (III)-nucleotide complexes are polymeric in nature both in the solid and aqueous solutions. In the metal-nucleotide complexes isolated from acidic solution, the nucleotide binding is via the phosphate group (inner sphere) and an indirect metal-N-7 interaction (outer-sphere) with the adenine N-1 site protonated. In the complexes obtained from neutral solution, metal chelation through the N-7 and the PO3(2-) group is prevailing. In aqueous solution, an equilibrium between the inner and outer sphere metal-nucleotide interaction has been observed. The ribose moiety shows C2'-endo/anti pucker in the free AMP anion and in the lanthanide (III)-AMP complexes, whereas the GMP anion with C2'-endo/anti sugar conformation exhibits a mixture of the C2'-endo/anti and C3'-endo/anti sugar puckers in the lanthanide (III)-GMP salts. The deoxyribose has O4'-endo/anti sugar pucker in the free dGMP anion and a C3'-endo/anti, in the lanthanide (III)-dGMP complexes.  相似文献   

6.
J A Walmsley  B L Sagan 《Biopolymers》1986,25(11):2149-2172
1H- and 31P-nmr spectroscopy have been used to investigate the self-association of M2(5′-CMP) [M = Li+, Na+, K+, Rb+, or (CH3)4 N+; 5′-CMP = cytidine 5′-monophosphate], the self-association of Li2(5′-GMP) (5′-GMP = guanosine 5′-monophosphate), and the heteroassociation of 5′-GMP and 5′-CMP (1 : 1 mole ratio) in aqueous solution as a function of the nature of the monovalent cation. Proton spectral differences for the different 5′-CMP salts exhibit a cation-size dependence and have been ascribed to a change in the stacking geometry. An average stacking association constant of 0.63 ± 0.24M?1 at 1°C, consistent with the weak stacking interactions of the cytosine bases, was determined for the 5′-CMP salts. Heteroassociation of 5′-GMP and 5′-CMP follows the reverse of the cation order for the formation of ordered aggregates of 5′-GMP. Heteroassociation occurs in the presence of Li+, Na+, and Rb+ ions, but only self-association occurs for the K+ nucleotides. Li2(5′-GMP), which does not form ordered species, self-associates to form disordered base stacks with a stacking constant of 1.63 ± 0.11M?1 at 1°C.  相似文献   

7.
The molecular structures of 3′-azido-2′,3′-dideoxyribosylthymine 5′-triphosphate (AZTTP), 2′,3′-dideoxyribosylinosine 5′-triphosphate (ddITP), 3′-azido-2′,3′-dideoxyribosylthymine 5′-monophosphate (AZTMP) and 2′,3′-dideoxyribosyladenine 5′-monophosphate (ddAMP) have been studied by NMR to understand their anti-HIV activity. For ddAMP and ddITP, conformations are almost identical with their nucleoside analogues with sugar ring pucker equilibriating between C3′-endo (∼75%) and C2′-endo (∼25%). AZTMP and AZTTP on the other hand show significant variations in the conformational behaviour compared with 3′-azido-2′,3′-dideoxyribo-sylthymine (AZT). The sugar rings for these nucleotides have a much larger population of C2′-endo (∼75%) conformers, like those observed for natural 2′-deoxynucleosides and nucleotides. The major conformers around C5′-O5′, C4′-C5′ and the glycosidic bonds are the βt, γ+ and anti, respectively.  相似文献   

8.
《Inorganica chimica acta》1987,135(3):207-210
An FT-IR spectroscopic study concerning changes in the conformation of sugar in the dinucleotides; GpC and CpG, on platination and intercalation is presented. The results are compared with the FT-IR spectral data of 5′-CMP, 5′-GMP, 3′-GMP and their metal adducts. The spectra of free GpC, free CpG, proflavine-GpC, proflavine-CpG, and cis-[Pt(NH3)2(GpC)2]2+ exhibit the diagnostic band at 800 cm−1 which was assigned to a sugar phosphate vibrational mode and diagnostic of C3′-endo sugar pucker. In the case of 9-aminoacridine-GpC and cis-[Pt(NH3)2(CpG]+ the diagnostic bands of the C2′-endo and C3′-endo conformations are observed at 810–820 cm−1 and near 800 cm−1 respectively. The results are in good agreement with X-ray data. The infrared diagnostic bands are important for distinguishing the sugar pucker conformational changes.  相似文献   

9.
Complexes formed in aqueous solution between cisplatin or hydrolysis species and 5′ adenosine monophosphate (AMP) or 5′ adenosine triphosphate (ATP), the latter with and without chloride ions, have been determined using 195Pt, 31P, 13C and 1H NMR. The present results lead to the conclusion that the only monodentate complexes with AMP are cis-Pt(NH3)2(AMP-N7)Cl at acid pH and cis-Pt(NH3)2(AMP-N7)OH at neutral and basic pH. Other bidentate complexes were identified as cis-Pt(NH3)2(AMP-N7)2 and cis-Pt(NH3)2(AMP-N7)(AMP-PO). Also discussed herein are the binding of platinum to the phosphate group Pγ with ATP and at acid pH, and the formation of the [cis-Pt(NH3)2(ATP-N7)H2O]+ complex. In neutral and basic pH ranges, the phosphate moiety of ATP is the most reactive site. In the presence of an excess of chloride ions, the complexation rates between the ATP and the cisplatin are decreased. Furthermore, in the experimental conditions used neither the ATP nor the AMP have shown binding to N1.  相似文献   

10.
Abstract

The interaction of DNA and RNA with Cu(II), Mg(II), [Co(NH3)6]3+ [Co(NH3)5Cl]2+ chlorides and, cis- and trans-Pt(NH3)2Cl2 (CIS-DDP, trans-DDP) has been studied by Fourier Transform Infrared (FT-IR) spectroscopy and a correlation between metal-base binding and conformational transitions in the sugar pucker has been established. It has been found that RNA did not change from A-form on complexation with metals, whereas DNA exhibited a B to Z transition. The marker bands for the A-form (C′3-endo-anti conformation) were found to be near 810–816 cm?1, while the bands at 825 and 690 cm?1 are marker bands for the B- conformation (C′2-endo, anti), The B to Z (C3-endo, syn conformation) transition is characterized by the shift of the band at 825 cm?1 to 810–816 cm?1 and the shift of the guanine band at 690 cm?1 to about 600–624 cm?1.  相似文献   

11.
Nuclease P1 cleaved substantially all phosphodiester bonds in rRNA, tRNA, poly(I), poly(U), poly(A), poly(C), poly(G), poly(I)·poly(C), native DNA and heat-denatured DNA to produce exclusively 5′-mononucleotides. Single-stranded polynucleotides were much more susceptible than double-stranded ones. Influence of pH and ionic strength on the hydrolysis rate significantly varied with the kind of polynucleotides. The enzyme also hydrolyzed 3′-phosphomonoester bonds in 3′-AMP, 3′-GMP, 3′-UMP, 3′-CMP, 3′-dAMP, 3′-dGMP, 3′-dCMP and 3′-dTMP. Ribonucleoside 3′-monophosphates were hydrolyzed 20 to 50 times faster than the corresponding 3′-deoxyribonucleotides. Base preference of the enzyme for 3′-ribonucleotides was in the order of G>A>C≧U, whereas that for 3′-deoxyribo-nucleotides was in the order of C≧T>A≧G. The 3′-phosphomonoester bonds in nucleoside 3′, 5′-diphosphates, coenzyme A and dinucleotides bearing 3′-phosphate were hydrolyzed at a rate similar to that for the corresponding 3′-mononucleotides. Adenosine 2′-monophosphate was highly resistant, being split at less than 1/3,000 the rate at which 3′-AMP was split.  相似文献   

12.
The multinuclear (1H, 15N, 31P and 195Pt) NMR spectroscopies, ES-MS and HPLC have been employed to investigate the structure-activity relationship for the reactions between guanosine 5′-monophosphate (5′-GMP) and the platinum(II)-triamine complexes of the general formulation cis-[Pt(NH3)2(Am)Cl]NO3 (where Am represents a substituted pyridine). The order of reaction rate of the reactions was found to be: 3-phpy > 4-phpy > py > 4-mepy > 3-mepy > 2-mepy. The two basic factors, steric and electronic, were attributed to the order of the binding rate constants. A possible mechanism of the reaction of cis-[Pt(NH3)2(Am)Cl]+ with 5′-GMP suggested that the reactions proceed via direct nucleophilic attack and no loss of ammonia. cis-[Pt(NH3)2(Am)Cl]+ binds to the N7 nitrogen of the guanine residue of 5′-GMP to form a coordinate bond with the Pt metal centre. This mechanism is apparently different from that of cisplatin. The pKa value of cis-[Pt(NH3)2(4-mepy)(H2O)](NO3)2 (5.63) has been determined at 298 K by the use of distortionless enhancement by polarization transfer (DEPT) 15N NMR spectroscopy and compared to the pKa value of cis-[PtCl(H2O)(NH3)2]+.  相似文献   

13.
Abstract

A normal coordinate analysis has been carried out on guanosine and cytidine residues appearing in oligo and polynucleotides by using a simplified valence force field that allows the vibrational spectra of 5′-dGMP and 2′-deoxycytidine molecules to be reproduced. The role of both C2′-endo and C3′-endo conformations on sugar pucker, as well as that of glycosidic torsion angle (χ), on several characteristic vibration modes of these residues have been studied. The present calculations based on a non-redundant set of internal coordinates preserving the harmonic approximation of the potential field, allows us to explain quite satisfactorily the modifications of the vibrational spectra in the 1550-1250 cm?1 and 785-500 cm?1 regions, when the right → left-handed conformational transition occurs.  相似文献   

14.
《Inorganica chimica acta》1988,153(3):145-153
The blue complexes produced by reaction of cis-diamminediaquoplatinum(II) nitrate, [cis-Pt(NH3)2(H2O)2](NO3)2, with disodium 5′-uridine monophosphate, 5′-UMP(Na2), in H2O and D2O have been investigated by FT-IR spectroscopy. On the basis of the spectral changes observed in the CO stretching region during the reactions, chelation of the amidate N(3)··O(2) moiety to Pt(II) appears to be more likely than N(4)··O(4) chelation. The antisymmetric PO stretching mode of the PO32− group of 5′-UMP splits into a triplet on complex formation indicating that PO32− plays an important role in the structure of the platinum blue complexes. In addition, the sugar moiety of 5′-UMP apparently adopts a predominantly C(3′)-endo conformation in the solid blue complex. Finally, Raman microprobe spectroscopy of the solid provides some evidence for PtN(3) bond formation.  相似文献   

15.
The conformational change of the ribose ring in NH4GpG and cis-[Pt(NH3)2(GpG)]+ was confirmed by FT-IR spectroscopic evidence as being C2′-endo, C3′-endo, anti, gg sugar ring pucker in the solid state. These results were compared with 1H NMR spectral data in aqueous solution. The FT-IR spectrum of NH4GpG shows marker bands at 802 cm?1 and 797 cm?1 which are assigned to the C3′-endo, anti, gg sugar-phosphate vibrations of ribose (?pG) and ribose (Gp?), respectively. The FT-IR spectrum of cis-[Pt(NH3)2(GpG)]+ (with N7N7 chelation in the GpG sequence) shows a marker band at 800 cm?1 which is assigned to the C3′-endo, and a new shoulder band at 820 cm?1 related to a C2′-endo ring pucker. The ribose conformation of (?pG) moiety in NH4-GpG, C3′-endo, anti, gg changes into C2′-endo, anti, gg when a platinum atom is chelated to N7N7 in the GpG sequence.  相似文献   

16.
5′-8NH2GMP forms an ordered structure in moderately acid (pD 4.7) solution. We propose for this ordered form a novel hemiprotonated G·G structure with a twofold rotation axis and three hydrogen bonds between each pair of guanine residues. Gel formation does not occur with this nucleotide in either neutral or acid solution. In neutral solution 5′-8NH2GMP also forms a regular, ordered structure, quite different from the acid form and similar to that formed by 5′-GMP under the same neutral conditions. We suggest that this ordered structure consists of a regularly stacked array of planar tetramers, similar to that proposed for 3′-GMP at pH 5.2  相似文献   

17.
Abstract

Treatment of O2, 3′-anhydro-5′-O-trityl derivatives of thymidine (1) and 2′-deoxyuridine (2) with lithium azide in dimethylformamide at 150 °C resulted in the formation of the corresponding isomeric 3′-azido-2′, 3′-dideoxy-5′-O-trityl-β-D-ribofuranosyl N1- (the major products) and N3-nucleosides (3/4 and 5/6). 3′-Amino-2′, 3′-dideoxy-β-D-ribofuranosides of thymidine [Thd(3′NH2)], uridine [dUrd(3′NH2)], and cytidine [dCyd(3′NH2)] were synthesized from the corresponding 3′-azido derivatives. The Thd(3′NH2) and dUrd(3′NH2) were used as donors of carbohydrate moiety in the reaction of enzymatic transglycosylation of adenine and guanine to afford dAdo(3′NH2) and dGuo(3′NH2). The substrate activity of dN(3′NH2) vs. nucleoside phosphotransferase of the whole cells of Erwinia herbicola was studied.  相似文献   

18.
The interactions of methylene blue, azure B, and thionine with calf thymus DNA, [poly (dG-dC)]2, [poly(dA-dT)]2, and the constituent mononucleotides 2′-deoxyguanosine-5′-monophosphate(dGMP), 2′-deoxyadenosine-5′-monophosphate(dAMP), 2′-deoxycytidine-5′-monophosphate(dCMP), and thymidine-5′-monophosphate(dTMP) have been studied by steady-state absorption spectroscopy and with equilibrium dialysis. Scatchard plots for binding of the dyes to the nucleic acid polymers were convex downward at low binding ratios, characteristic of intercalation, and binding constants for this mode were calculated under conditions of varying ionic strength. For each of the dyes, binding constants with [poly(dG-dC)]2 and [poly(dA-dT)]2 were of the same order of magnitude, so that previously reported (G-C) preferentially is not very marked. At high binding ratios, the Scatchard plots did not return to the abscissa but curved upward, indicative of a weaker cooperative binding mode, occurring under conditions where the dye is in excess, which is suggested to be external stacking of the dye molecules promoted by the polyanion. The dependence of the absorption spectra on added salt demonstrated a shift in the strong binding mode for the three dyes with [poly(dA-dT)]2 with increasing ionic strength, while with [poly(dG-dC)]2 this does not occur. The dyes were found to bind to purine but not pyrimidine mononucleotides with dGMP and dAMP, 1:1 complexes were formed initially and also 1:2 dye/nucleotide complexes with increasing nucleotide concentrations. Under low salt conditions, binding to dAMP was slightly stronger than to dGMP for the three dyes studied, while at high ionic strength, when the binding constants are significantly lower, all binding constants become very similar. Binding to mononucleotides is suggested to be primarily stabilised by π-π stacking interactions between the planar dyes and the nucleobases: for thionine and azure B there also appears to be H-bonds between the exocyclic amines and the sugar–phosphates conferring extra stability. Neither increasing the number of phosphate groups on the nucleotides nor changing from deoxyribose to ribose sugars had any significant effect on the binding constants. © 1995 John Wiley & Sons, Inc.  相似文献   

19.
The interaction of guanine, guanosine or 5-GMP (guanosine 5-monophosphate) with [Pd(en)(H2O)2](NO3)2 and [Pd(dapol)(H2O)2](NO3)2, where en is ethylenediamine and dapol is 2-hydroxy-1,3-propanediamine, were studied by UV-Vis, pH titration and 1H NMR. The pH titration data show that both N1 and N7 can coordinate to [Pd(en)(H2O)2]2+ or [Pd(dapol)(H2O)2]2+. The pKa of N1-H decreased to 3.7 upon coordination in guanosine and 5-GMP complexes, which is significantly lower than that of ∼9.3 in the free ligand. In strongly acidic solution where N1-H is still protonated, only N7 coordinates to the metal ion, but as the pH increases to pH ∼3, 1H NMR shows that both N7-only and N1-only coordinated species exist. At pH 4-5, both N1-only and N1,N7-bridged coordination to Pd(II) complexes are found for guanosine and 5-GMP. The latter form cyclic tetrameric complexes, [Pd(diamine)(μ-N1,N7-Guo]44+ and [Pd(diamine)(μ-N1,N7-5-GMP)]4Hx(4−x)−, (x=2,1, or 0) with either [Pd(en)(H2O)2](NO3)2 or [Pd(dapol)(H2O)2](NO3)2. The pH titration data and 1H NMR data agree well with the exception that the species distribution diagrams show the initial formation of the N1-only and N1,N7-bridged complexes to occur at somewhat higher pH than do the NMR data. This is due to a concentration difference in the two sets of data.  相似文献   

20.
Effects of various factors including incubation time, water content of airdried cells, concentration and pH of KH2PO4–K2HPO4 mixture, d-glucose concentration, MgSO4 concentration, GMP concentration, cell concentration, aeration and various kinds of carbohydrates on the fermentative production of GDP-mannose, GDP and GTP from 5′-GMP by air-dried cells of baker’s yeast were investigated. The water content of air-dried cells was the most important factor in the fermentation. When the air-dried cells of baker’s yeast (100 mg/ml) were incubated with 5′-GMP (20 μmoles/ml), d-glucose (800 μmoles/ml), potassium phosphate buffer (360 μmoles/ml, pH 7.0), and MgSO4 (20 μmoles/ml), 2-hr incubation gave GDP in 20% yield and GTP in 61.1% yield, GDP-mannose being produced in 45% yield after 8-hr incubation. The phosphorylation of 5′-AMP, 5′-dAMP, 5′-dGMP 5′-CMP and 5′-UMP was also observed in high yields under the same conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号