首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A calculated approach based on the Higgs method for assigning the vibration modes of an infinite helicoidal polymeric chain has been performed on the basis of a reliable valence force field. The calculated results allowed the phosphate-backbone marker modes of the A and B forms, to be interpreted. In the dynamic models used, the bases have been omitted and no interchain interaction was considered. The calculation can also interprete quite satisfactorily the characteristic Raman peaks and infrared bands in the 1250-700 cm-1 spectral region arising from the sugar or sugar-phosphate association and reproduce their evolution upon the B----A DNA conformational transition. They clearly show that the phosphate-backbone modes in the above mentioned spectral region constitute the optical branches of the phonon dispersion curves with no detectable variation in the first Brillouin-zone.  相似文献   

2.
Abstract

A systematic study of the sugar pucker characteristic vibration modes as a function of its geometrical conformations, has been performed. The present investigation is based on the Wilson GF method and a non-redundant valence force field. The calculated results allow to assign the modes arising mainly from the sugar motions and present in quasi whole vibrational spectra related to the right or left-handed double-helices (i.e., 1050 cm?1,960 cm?1 and 890 cm?1). Moreover, the conformation dependent modes as those at 860 cm?1 and around 810 cm?1 (A form) as well as the one located around 830 cm?1 (B form) are interpreted by the present investigation. The possibility of the interaction of the latter modes with the phosphate group motions along the DNA double-helical chains are also discussed.  相似文献   

3.
The absolute configuration of semisynthetic (?)‐3α,6β‐acetoxytropane 1 , prepared from (?)‐6β‐hydroxyhyoscyamine 2 , has been determined using vibrational circular dichroism (VCD) spectroscopy. The vibrational spectra (IR and VCD) were calculated using DFT at the B3LYP/DGDZVP level of theory for the eight more stable conformers which account for 99.97% of the total relative abundance in the first 10 kcal/mol range. The calculated VCD spectra of all considered conformations showed two distinctive spectral ranges, one between 1300 and 1200 cm?1, and the other one in the 1150–950 cm?1 region. When compared with the experimental VCD spectrum, the first spectral region confirmed the calculated conformational preferences, whereas the second region showed little change with conformation, thus allowing the determination of the absolute configuration of 1 as (3S,6S)‐3α,6β‐diacetoxytropane. Also, the bands in the second region showed similarities between 1 and 2 in both the experimental and calculated VCD spectra, suggesting that these bands are mainly related to the absolute configuration of the rigid tropane ring system, since they show conformational independency, no variations with the nature of the substituent, and are composed by closely related vibrational modes. Chirality, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

4.
3-Benzoyl-5-chlorouracil (3B5CU), a biologically active synthetic molecule, has been analysed at DFT/6-311+ + G(d,p) level and reported for the first time as a potential candidate for nonlinear optical (NLO) applications. The optimised skeleton of 3B5CU molecule is non-planar. The frontier orbital energy gap, dipole moment, polarisability and first static hyperpolarisability have been calculated. The first static hyperpolarisability is found to be almost 15 times higher than that of urea. The high value of first static hyperpolarisability (2.930 × 10? 30 e.s.u.) due to the intra-molecular charge transfer in 3B5CU has been discussed using first principles. A complete vibrational analysis of the molecule has been performed by combining the experimental Raman, FT-IR spectral data and the quantum chemical calculations. In general, a good agreement of calculated modes with the experimental ones has been obtained. The strong vibrational modes contributing towards NLO activity, involving the whole charge transfer path, have been identified and analysed.  相似文献   

5.
On the basis of a harmonic dynamics calculation, it is shown that in the 800–500-cm?1 spectral region of DNA vibrational spectra, the characteristic Raman peaks and ir bands do not arise from the same nucleosidic motions. The Raman spectra involve mainly the ring-breathing modes of nucleic bases while the ir spectra reveal essentially their out-of-plane vibrations. Moreover, the calculated results show the splitting of the guanine- and adenine-residue breathing modes upon their coupling with the sugar-pucker motions. This fact is in agreement with the poly[d(G-C)] and poly[d(A-T)] Raman spectra.  相似文献   

6.
Summary A13C NMR study is reported of the hinge region of an intact mouse monoclonal antibody with a molecular weight of 150 K. Cys, Ile, and Pro analogs of the antibody labeled with13C at the carbonyl carbon were prepared by growing hybridoma cells in the serum-free media. Resonance assignments have been performed as described previously [Kato, K., Matsunaga, C., Igarashi, T., Kim, H., Odaka, A., Shimada, I. and Arata, Y. (1991)Biochemistry,30, 270–278]. The spectral data obtained show that13C NMR can give detailed information about the structure of the hinge region of the intact antibody molecule. Prospects for the future role of13C NMR in the structural analyses of larger proteins are briefly discussed.Dedicated to the memory of Professor V.F. Bystrov  相似文献   

7.
Density functional theory (DFT) (B3LYP and B3PW91) calculations have been carried out for 2,6-dimethyl-2,5-heptadien-4-one (DMHD4O) using 6–311++ G** basis set. Complete vibrational assignment and analysis of the fundamental modes of the compound were carried out from the FTIR and FT-Raman spectral data. The theoretical electronic absorption has been calculated by using time-dependent DFT (TD-DFT) methods and compared with the experimental spectra. The theoretically computed Frontier energy gaps and TD-DFT calculations are in good agreement with the experimental UV–vis spectral absorption. The chemical hardness measured from the Frontier molecular orbital energies of DMHD4O is 0.0693 eV. Electronic stability of the compound arising from hyperconjugative interactions and charge delocalisation were also investigated based on the natural bond orbital (NBO) analysis. Effective stabilisation energy E (2) associated with the interactions of the π and the lone pair of electrons was determined by the NBO analysis. 13C and 1H NMR chemical shifts of the compound have been calculated by means of Gauge-Invariant Atomic Orbital using B3LYP/6–311++ G** method. The partial ionic character of the carbonyl group due to resonance render a partially positive charge to the carbonyl carbon, and thus C4 chemical shift lie in the very downfield 191.6 ppm. Comparison between the experimental and the theoretical results indicates that B3LYP method is able to provide satisfactory results for predicting vibrational, electronic and NMR properties.  相似文献   

8.
The structures of cirratiomycin A and B have been elucidated by a degradative study and 1H-and 13C-NMR spectral analysis. It is revealed here that cirratiomycin A and B are heptapeptides containing three unusual new amino acids, viz, hydroxymethylserine, 2,3,4,5-tetrahydropyridazine-3-carboxylic acid and 2,3-didehydroisoleucine.  相似文献   

9.
《Phytochemistry》1986,25(6):1301-1304
The structures of two new ecdysteroid glycosides from Blechnum minus have been shown, on the basis of chemical, mass spectral, 1H NMR and 13CNMR spectral evidence, to be 2-deoxyecdysone 3-β-d-glycopyranoside (blechnoside A) and 2-deoxyecdysone 25-β-d-glucopyranoside (blechnoside B).  相似文献   

10.
Abstract

We report the interaction of calf-thymus DNA with D-glucose, D-fructose, D-galactose and sucrose in aqueous solution at physiological pH with sugar/DNA(P)(P=phosphate) molar ratios (r) of 1/10,1/5,1,5 and 10. FTIR difference spectroscopy was used to characterize the nature of sugar-DNA interaction and correlations between spectral changes and structural variations for both sugar and DNA complexes have been established.

FTIR difference spectroscopic results showed major sugar interaction (H-bonding) with the P02 groups of the backbone at low sugar concentrations (r= 1/10 and 1/5). Such interaction was characterized by the shift and the intensity variations of the backbone P02 antisymmetric stretch at 1222 cm?1, which resulted in a major helical stability of DNA duplex. As sugar concentration increased, carbohydrate binding to DNA bases occurred. Evidence for this comes from major shiftings of the sugar O-H stretching vibrations at 3500–3200 cm?1, and sugar C-O stretches and OH bending modes at 1450–1000 cm”. Similarly, shifting and intensity variations of several DNA in-plane vibrations at 1717 (G,T), 1663 (T,G,A,C) and 1492 cm?1 (C,G) were observed, that are characterized by the presence of sugar-base interaction (via H20). The shiftings and the intensity changes of the sugar OH stretching modes at 35003200 cm?1 are also indicative of the rearrangements of the sugar intermolecular H-bonding network, on DNA complex formation. A partial B to A conformational transition was observed for DNA molecule on sugar complexation, whereas carbohydrate binding occurred via both a- and β-anomeric structures.  相似文献   

11.
J M Eyster  E W Prohofsky 《Biopolymers》1974,13(12):2527-2543
The eigenvalues and eigenvectors of 11-fold double-helical poly(rU)·poly(rA) have been calculated. The vibrational potential energy of the double-helical structure is initially considered to be a sum of the vibrational potential energy of the single-helical structures poly(rU) and poly(rA). Coupling between the single helices is introduced by including a stretch force constant for each hydrogen bond between the uracil and adenine base residues. In addition, a model is presented for nonbonded interactions between nearest neighbor base pairs, which is consistent with a previous model for such interactions in the single helices. Because of the simple structural relationship between the uncoupled single helices and the double helix we are able to cast the secular equation for poly(rU)·poly(rA) in a form suitable for the use of perturbation theory using the previously calculated normal modes for the single helices as the unperturbed modes. Perturbation theory was found to be inapplicable for the region of the spectrum ?450 cm?1. In this region an exact Green function technique is used to calculate the strongly coupled modes. We explicitly display one aspect of these double-helical normal modes. The stretching motions of the hydrogen bonds in the region of the spectrum <450 cm?1 have been plotted as bar graphs for each mode.  相似文献   

12.
ABSTRACT

Various pharmacological properties of Xinjiang licorice flavonoids have been reported recently. We have investigated constituents corresponding to distinct peaks on the high-performance liquid chromatography (HPLC) profile of a flavonoid-rich extract from licorice, and identified 13 flavonoids, including licochalcone A (1), licochalcone B (3), glabrone (4), and echinatin (5), by isolating them and then performing high-resolution electrospray ionization mass spectrometry and 1H nuclear magnetic resonance (NMR) spectral analyses. We then applied the 1H quantitative NMR (qNMR) method for analysis of major flavonoids, 1 and 3–5 in the extract. The 1H qNMR results were supported by 13C NMR analysis. The results demonstrated the utility of the combination of HPLC profiling and qNMR analyses for quality control of Xinjiang licorice. Additionally, we observed a moderate inhibitory effect of the most abundant constituent, licochalcone A (1), on acetylcholine esterase activity, suggesting utility as a seed for drug development.  相似文献   

13.
IntroductionAmong metabolic disorders, gestational diabetes mellitus (GDM) is specified as hyperglycemia caused by glucose or carbohydrate intolerance defects. GDM is distinguished by oxidative stress, and has been connected to mitochondrial dysfunction. Previous studies have documented the relation between A12026G, A8344G and A3243G mutations in ND4, tRNALeu(UUR), and tRNALys genes in different modes of diabetes.AimThe purpose of this study was to investigate into the relationship between GDM women and common mitochondrial mutations including A12026, A8344G, and A3243G in Saudi women.MethodsIn this case-control study, we have opted 96 GDM and 102 non-GDM pregnant women and DNA was extracted using EDTA blood and based on specific primers, Polymerase Chain Reaction was followed and then Restriction Fragment Length Polymorphism (RFLP) analysis was performed. Restriction enzymes was cross-checked with Lambda DNA and 10% of the purified PCR products were performed the Sanger sequencing analysis to reconfirm the RFLP analysis of the studied results.ResultsNone of the heterozygous and homozygous mutations were not observed in our study. All the subjects were turned to be homozygous normal genotypes.ConclusionThis study confirms that A12026, A8344G, and A3243G mutations have no role in the Saudi women with GDM.  相似文献   

14.
PurposeEPID dosimetry in the Unity MR-Linac system allows for reconstruction of absolute dose distributions within the patient geometry. Dose reconstruction is accurate for the parts of the beam arriving at the EPID through the MRI central unattenuated region, free of gradient coils, resulting in a maximum field size of ~10 × 22 cm2 at isocentre. The purpose of this study is to develop a Deep Learning-based method to improve the accuracy of 2D EPID reconstructed dose distributions outside this central region, accounting for the effects of the extra attenuation and scatter.MethodsA U-Net was trained to correct EPID dose images calculated at the isocenter inside a cylindrical phantom using the corresponding TPS dose images as ground truth for training. The model was evaluated using a 5-fold cross validation procedure. The clinical validity of the U-Net corrected dose images (the so-called DEEPID dose images) was assessed with in vivo verification data of 45 large rectum IMRT fields. The sensitivity of DEEPID to leaf bank position errors (±1.5 mm) and ±5% MU delivery errors was also tested.ResultsCompared to the TPS, in vivo 2D DEEPID dose images showed an average γ-pass rate of 90.2% (72.6%–99.4%) outside the central unattenuated region. Without DEEPID correction, this number was 44.5% (4.0%–78.4%). DEEPID correctly detected the introduced delivery errors.ConclusionsDEEPID allows for accurate dose reconstruction using the entire EPID image, thus enabling dosimetric verification for field sizes up to ~19 × 22 cm2 at isocentre. The method can be used to detect clinically relevant errors.  相似文献   

15.
Barlerisides A (1) and B (2), new phenolic glycosides, have been isolated from the n-butanol soluble sub-fraction of Barleria acanthoides along with two known compounds acteoside (3) and p-hydroxycinnamic acid (4). Their structures have been assigned on the basis of spectral studies. Both 1 and 2 showed significant activity in the superoxide scavenging assay while weak inhibitory activity was observed against the enzyme xanthine oxidase.  相似文献   

16.
17.
The title molecule 1,5-diphenylpenta-2,4-dien-1-one (cinnamylideneacetophenone, CA) has been synthesised and characterised by FTIR, FT-Raman, NMR and UV–vis spectral analyses. The possible stable conformers of the CA molecule were searched by potential energy surface scan at B3LYP level of theory. The molecular geometry from X-ray determination of the CA molecule in the ground state has been compared using the density functional theory (DFT) with 6-31G(d,p) basis set. The harmonic vibrational modes, the corresponding wavenumbers and IR and Raman intensities of most stable conformer were calculated by the DFT method. The assignments of the fundamentals were proposed on the basis of total energy distribution calculations. The calculated 13C and 1H NMR chemical shifts using gauge including atomic orbitals approach are in good agreement with the observed chemical shifts. The molecular stability and bond strength have been investigated by applying natural bond orbital analysis. Using the time-dependent DFT method, the electronic absorption spectrum of the title compound has been predicted and the electronic transitions within the molecule have been interpreted. The molecular electrostatic potential map was used for predicting possible hydrogen and oxygen bonding sites in the CA molecule.  相似文献   

18.
Galinsosides A (1) and B (2), new flavanone glucosides together with two known flavanones, 7,3′,4′-trihydroxyflavanone (3) and 3,5,7,3′,4′-pentahydroxyflavanone (4) have been isolated from an ethyl acetate- soluble fraction of Galinsoga parviflora. Their structures were assigned on the basis of spectral studies. Compound 1 showed significant antioxidant and urease inhibitory activity while compound 2 was moderately active. On the other hand, 2 showed inhibitory potential against α-glucosidase.  相似文献   

19.
Abstract

A conformational analysis of the A, B, C and D DNA forms was made in order to establish molecular models presenting a good agreement with experimental data obtained from fiber X-ray, infrared linear dichroism and 31P NMR. The proposed models have been refined and do present good stereochemistry and optimized H-bond distances between bases associated with the Watson-Crick pairing. The DNA conformations proposed are a left handed double helix for the C form and right handed helices for A, B and D. Relations to conformational transitions between these forms are discussed.  相似文献   

20.
Abstract

Two new 10-methoxydibenzo[b,h][1,6]naphthyridine-2-carboxamide derivatives (R1 and R2) have been synthesized and characterized using different spectral techniques. The binding of these probes with DNA was investigated using spectral (Electronic, fluorescence, 1H NMR and circular dichroism) and molecular docking studies. These probes exhibited a strong fluorescence around 440?nm upon excitation around 380?nm. Electronic and competitive fluorescence titration studies, in HEPES [(4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid)] buffer/dimethyl sulfoxide (pH 7.4) medium, suggest that these probes bind strongly to DNA, which is substantiated by 1H NMR study. The binding constants are calculated to be 5.3?×?107 and 6.8?×?106 M?1 for R1 and R2, respectively. From the results of spectral studies, it is proposed that the mechanism of binding of these probes with DNA is through minor groove binding mode, which is further confirmed by circular dichroism and molecular docking studies. Initial cell viability screening using MTT (3-[4,5-methylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide) assay shows that normal Vero cells are viable towards these probes at nano molar concentration, which is the concentration range employed in the present study for DNA staining (IC50 in the order of 0.023?mM). The enhancement in fluorescence intensity of these probes upon binding with DNA enables the staining of DNA in agarose gel in gel electrophoresis experiment. The sensitivity of these probes is comparable with that of ethidium bromide and DNA amounts as low as 4 nano gram are detectable.

Communicated by Ramaswamy H. Sarma  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号