首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mandelate racemase from Pseudomonas putida is a promising candidate for the dynamic kinetic resolution of α-hydroxy carboxylic acids. In the present study, the thermal stability of mandelate racemase was investigated through molecular dynamics simulations in the temperature range of 303–363 K, which can guide the design of mandelate racemase with higher stability. The basic features such as radius of gyration, surface accessibility, and secondary structure content suggested the instability of mandelate racemase at high temperatures. With increase in temperature, α-helix content reduced significantly, especially the α-helices exposed to the environment. At the simulation time scale considered, intra-protein hydrogen bonds, hydrogen bonds between protein and water decreased at 363 K, while the number of salt-bridges increased. The long-distance networks remarkably changed at 363 K. A considerable number of long-lived (percentage existence time higher than 90%) hydrogen bonds and Cα contacts were lost. Root mean square fluctuation analysis revealed regions with high fluctuation, which should be helpful in the reengineering of mandelate racemase for enhanced thermal stability.  相似文献   

2.
Singh N  Briggs JM 《Biopolymers》2008,89(12):1104-1113
Protein flexibility and conformational diversity is well known to be a key characteristic of the function of many proteins. Human blood coagulation proteins have multiple substrates, and various protein-protein interactions are required for the smooth functioning of the coagulation cascade to maintain blood hemostasis. To address how a protein may cope with multiple interactions with its structurally diverse substrates and the accompanied structural changes that may drive these changes, we studied human Factor X. We employed 20 ns of molecular dynamics (MD) and steered molecular dynamics (SMD) simulations on two different conformational forms of Factor X, open and closed, and observed an interchangeable conformational transition from one to another. This work also demonstrates the roles of various aromatic residues involved in aromatic-aromatic interactions, which make this dynamic transition possible.  相似文献   

3.
Fullerene molecules are cage-like nanoscopic structures with pentagonal and hexagonal faces. In practical applications such as fullerene-reinforced nanocomposites (FRNCs), these structures may be subjected to tension force. In this research, we employ molecular dynamics (MD) simulation to compute the behaviour and deformation of different fullerene molecules, ranging from C60 to C2000, under tension force. To model the interactions between carbon atoms in the MD simulations, the adaptive intermolecular reactive bond order (AIREBO) force field is used. The displacement–force and the displacement–strain energy curves are obtained. It is observed that a new type of structural instability occurs in the fullerene molecules when the applied tension force increases. This abnormal structural instability in the fullerenes is investigated for the first time in the literature. The critical tensile forces and the corresponding mode shapes are determined for different fullerenes. The results indicate that the critical forces and deformations strongly depend upon the number of carbon atoms.  相似文献   

4.
Hughes SJ  Tanner JA  Miller AD  Gould IR 《Proteins》2006,62(3):649-662
We report molecular dynamics simulations of the Escherichia coli Lysyl-tRNA synthetase LysU isoform carried out as a benchmark for mutant simulations in in silico protein engineering efforts. Unlike previous studies of aminoacyl-tRNA synthetases, LysU is modelled in its full dimeric form with explicit solvent. While developing a suitable simulation protocol, we observed an asymmetry that persists despite improvements to the model. This prediction has directly led to experiments that establish a functional asymmetry in nucleotide binding by LysU. The development of a simulation protocol and validation of the model are presented here. The observed asymmetry is described and the role of protein flexibility in developing the asymmetry is discussed.  相似文献   

5.
The area coefficients of thermal expansion (CTEs) of perfect single layer graphene sheet (SLGS) and SLGS with vacancy defects of different distributions were calculated in this work through molecular dynamics (MD) simulations. The effects of some parameters such as temperature, SLGS size, sample area size, vacancy fraction and vacancy distribution on CTE were investigated extensively. Numerical results clearly revealed that for both perfect and defective SLGSs, the area CTEs are negative and nonlinear with the temperature variation within a wide temperature range. Moreover, the area CTEs tend to be more insensitive to the temperature when temperature is higher than 600 K. The area CTE of a perfect SLGS converges only when the SLGS size and the ratio of the sample size to the SLGS size is above a critical value. When the SLGS size or the sample size is small, the area CTE shows distinct size-dependence. In addition, a set of empirical formulations is proposed for evaluating the area CTEs of perfect SLGSs within a wide temperature range. For the SLGS with vacancy defects, the area CTE decreases with the increase of vacancy fraction within the temperature range considered. Furthermore, compared with a decentralised distribution of vacancy defects, a concentrated distribution leads to a smaller value of area CTE of SLGS, especially for the case of high vacancy fraction.  相似文献   

6.
Molecular dynamics simulations in vacuum and with a water sphere around the active site were performed on the 2GMP-RNase T1 complex. The presence of water led to the maintenance of the 2-GMP-RNase T1 interactions as compared to the X-ray structure, including the hydrogen bonds implicated in the enzyme-inhibitor recognition process. The sidechain of His92 in the molecular dynamics water simulation, however, hydrogen bonds directly to the phosphate of 2GMP in contrast to the X-ray structure but in support of the role of that residue in the enzyme's catalytic mechanism. Fluctuations of activesite residues are not strongly influenced by water, possibly owing to the exclusion of water by the bound 2GMP, which did show an increase in mobility. Analysis of the 2GMP-RNase T1 interactions versus time reveal an equilibrium fluctuation in the presence of water, leading to a less favorable 2GMP-RNase T1 interaction energy, suggesting a possible relationship between picosecond fluctuations and inhibitor dissociation occurring in the millisecond time domain.Abbreviations RNase T1 Ribonuclease T1 (EC.3.1.27.3) - 2GMP Guanosine-2-monophosphate - SBS Stochastic Bondary Simulation - VS Vacuum Simulation - MD Molecular Dynamics  相似文献   

7.
The anti-apoptotic B-cell lymphoma 2 (Bcl-2) protein interacts with several proteins that regulate the apoptotic properties of cells. In this research, we conduct several all-atom molecular dynamics (MD) simulations under high-temperature unfolding conditions, from 400 to 800?K, for 25?ns. These simulations were performed using a model of an engineered Bcl-2 human protein (Bcl-2-Δ22Σ3), which lacks 22 C-terminal residues of the transmembrane domain. The aim of this study is to gain insight into the structural behavior of Bcl-2-Δ22Σ3 by mapping the conformational movements involved in Bcl-2 stability and its biological function. To build a Bcl-2-Δ22Σ3 three-dimensional model, the protein core was built by homology modeling and the flexible loop domain (FLD, residues 33-91) by ab initio methods. Further, the entire protein model was refined by MD simulations. Afterwards, the production MD simulations showed that the FLD at 400 and 500?K has several conformations reaching into the protein core, whereas at 600?K some of the alpha-helices were lost. At 800?K, the Bcl-2 core is destabilized suggesting a possible mechanism for protein unfolding, where the alpha helices 1 and 6 were the most stable, and a reduction in the number of hydrogen bonds initially occurs. In conclusion, the structural changes and the internal protein interactions suggest that the core and the FLD are crucial components of Bcl-2 in its function of regulate ng access to the recognition sites of kinases and caspases.  相似文献   

8.
Filamentous amyloid aggregates are central to the pathology of Alzheimer's disease. We use all-atom molecular dynamics (MD) simulations with explicit solvent and multiple force fields to probe the structural stability and the conformational dynamics of several models of Alzheimer's beta-amyloid fibril structures, for both wild-type and mutated amino acid sequences. The structural models are based on recent solid state NMR data. In these models, the peptides form in-register parallel beta-sheets along the fibril axis, with dimers of two U-shaped peptides located in layers normal to the fibril axis. Four different topologies are explored for stacking the beta-strand regions against each other to form a hydrophobic core. Our MD results suggest that all four NMR-based models are structurally stable, and we find good agreement with dihedral angles estimated from solid-state NMR experiments. Asp23 and Lys28 form buried salt-bridges, resulting in an alternating arrangement of the negatively and positively charged residues along the fibril axis that is reminiscent of a one-dimensional ionic crystal. Interior water molecules are solvating the buried salt-bridges. Based on data from NMR measurements and MD simulations of short amyloid fibrils, we constructed structural models of long fibrils. Calculated X-ray fiber diffraction patterns show the characteristics of packed beta-sheets seen in experiments, and suggest new experiments that could discriminate between various fibril topologies.  相似文献   

9.
The histidine-containing protein (HPr) plays an important role in the phosphotransferase system (PTS). The deformations induced on the protein structure at high hydrostatic pressure values (4, 50, 100, 150, and 200 MPa) were previously (H. Kalbitzer, A. G?rler, H. Li, P. Dubovskii, A. Hengstenberg, C. Kowolik, H. Yamada, and K. Akasaka, Protein Science 2000, Vol. 9, pp. 693-703) analyzed by NMR experiments: the nonlinear variations of the amide chemical shifts at high pressure values were supposed to arise from induced shifts in the protein conformational equilibrium. Molecular dynamics (MD) simulations are here performed, to analyze the protein internal mobility at 0.1 MPa, and to relate the nonlinear variations of chemical shifts observed at high pressure, to variations in conformational equilibrium. The global features of the protein structure are only slightly modified along the pressure. Nevertheless, the values of the Voronoi residues volumes show that the residues of alpha-helices are more compressed that those belonging to the beta-sheet. The alpha-helices are also displaying the largest internal mobility and deformation in the simulations. The nonlinearity of the 1H chemical shifts, computed from the MD simulation snapshots, is in qualitative agreement with the nonlinearity of the experimentally observed chemical shifts.  相似文献   

10.
With the rise of antibody based therapeutics as successful medicines, there is an emerging need to understand the fundamental antibody conformational dynamics and its implications towards stability of these medicines. Both deglycosylation and thermal stress have been shown to cause conformational destabilization and aggregation in monoclonal antibodies. Here, we study instabilities caused by deglycosylation and by elevated temperature (400 K) by performing molecular dynamic simulations on a full length murine IgG2a mAb whose crystal structure is available in the Protein Data bank. Cα‐atom root mean square deviation and backbone root mean square fluctuation calculations show that deglycosylation perturbs quaternary and tertiary structures in the CH2 domains. In contrast, thermal stress pervades throughout the antibody structure and both Fabs and Fc regions are destabilized. The thermal stress applied in this study was not sufficient to cause large scale unfolding within the simulation time and most amino acid residues showed similar average solvent accessible surface area and secondary structural conformations in all trajectories. CH3 domains were the most successful at resisting the conformational destabilization. The simulations helped identify aggregation prone regions, which may initiate cross‐β motif formation upon deglycosylation and upon applying thermal stress. Deglycosylation leads to increased backbone fluctuations and solvent exposure of a highly conserved APR located in the edge β‐strand A of the CH2 domains. Aggregation upon thermal stress is most likely initiated by two APRs that overlap with the complementarity determining regions. This study has important implications for rational design of antibody based therapeutics that are resistant towards aggregation. Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

11.
Pin1 catalyses the intrinsically slow process of cis-trans isomerisation and has been identified as a possible drug target in many diseases. Recently, the wild type (WT) and the Cys113Asp mutant of the Pin1 peptidyl-prolyl isomerase (PPIase) domain were determined by nuclear magnetic resonance. In this article, the WT and Cys113Asp mutant of PPIase domain are studied by molecular dynamics simulations. The structural stability analysis shows that the Cys113Asp mutation leads to the higher fluctuation of hydrophobic core in PPIase domain. The intrinsic correlated motions are important for the catalytic function of Pin1, whereas the Cys113Asp mutant system loses pivotal dynamical properties and develops wider conformational states than those in WT system. The intramolecular hydrogen bonds play crucial roles in the structural stability of PPIase domain. The mutated residue Asp113 attracts the side chain of His59 in the Cys113Asp system, which unbalances the internal interactions inside the catalytic tetrad. Meanwhile, the conformational changes of PPIase domain affect the side chain orientations of Lys63 and Arg69, which limit their binding with substrates. The Cys113Asp mutation destabilises the whole binding region of Pin1 PPIase domain, so the catalysis activity is severely reduced. These results are consistent with experimental studies and may help to understand the isomerisation mechanisms of Pin1.  相似文献   

12.
13.
Compared with imidazolium-based ionic liquids (ILs), phosphonium-based ILs have been proven to be more stable in thermodynamics and less expensive to manufacture. In this work, a kind of phosphonium-based IL, [PC6C6C6C14][Tf2N], was studied under several conditions using molecular dynamics simulations based on both the all-atom force field (AAFF) and the united-atom force field. Liquid density was calculated to validate the force field. Compared with experimental data, good agreement was obtained for the simulated density based on the AAFF. Heat capacities at constant pressure were calculated at several temperatures, and good linear relationships were observed. Self-diffusion coefficients, viscosities and conductivities were also calculated to study the dynamics properties of this IL. The viscosity of this IL at 293 K was also compared with experimental data, and the error was in a reasonable range. In order to depict the microstructures of the IL, centre-of-mass and site-to-site radial distribution functions were employed. In addition, spatial distribution functions were investigated to present the more intuitive features.  相似文献   

14.
Transport properties of concentrated electrolytes have been analysed using classical molecular dynamics simulations with the algorithms and parameters typical of simulations describing complex electrokinetic phenomena. The electrical conductivity and transport numbers of electrolytes containing monovalent (KCl), divalent (MgCl2), a mixture of both (KCl+MgCl2) and trivalent (LaCl3) cations have been obtained from simulations of the electrolytes in electric fields of different magnitude. The results obtained for different simulation parameters have been discussed and compared with experimental measurements of our own and from the literature. The electroosmotic flow of water molecules induced by the ionic current in different cases has been calculated and interpreted with the help of the hydration properties extracted from the simulations.  相似文献   

15.
Thrombin is an attractive target for antithrombotic therapy due to its central role in thrombosis and hemostasis as well as its role in inducing tumor growth, metastasis, and tumor invasion. The thrombin-binding DNA aptamer (TBA), is under investigation for anticoagulant drugs. Although aptamer binding experiments have been revealed various effects on thrombin’s enzymatic activities, the detailed picture of the thrombin’s allostery from TBA binding is still unclear. To investigate thrombin’s response to the aptamer-binding at the molecular level, we compare the mechanical properties and free energy landscapes of the free and aptamer-bound thrombin using microsecond-scale all-atom GPU-based molecular dynamics simulations. Our calculations on residue fluctuations and coupling illustrate the allosteric effects of aptamer-binding at the atomic level, highlighting the exosite II, 60s, γ and the sodium loops, and the alpha helix region in the light chains involved in the allosteric changes. This level of details clarifies the mechanisms of previous experimentally demonstrated phenomena, and provides a prediction of the reduced autolysis rate after aptamer-binding. The shifts in thrombin’s ensemble of conformations and free energy surfaces after aptamer-binding demonstrate that the presence of bound-aptamer restricts the conformational freedom of thrombin suggesting that conformational selection, i.e. generalized allostery, is the dominant mechanism of thrombin-aptamer binding. The profound perturbation on thrombin’s mechanical and thermodynamic properties due to the aptamer-binding, which was revealed comprehensively as a generalized allostery in this work, may be exploited in further drug discovery and development.  相似文献   

16.
Signaling of the tissue factor‐FVIIa complex regulates angiogenesis, tumor growth, and inflammation. TF‐FVIIa triggers cell signaling events by cleavage of protease activated receptor (PAR2) at the Arg36‐Ser37 scissile bond. The recognition of PAR2 by the FVIIa protease domain is poorly understood. We perform molecular modeling and dynamics simulations to derive the PAR2‐FVIIa interactions. Docking of the PAR2 Arg36‐Ser37 scissile bond to the S1 site and subsequent molecular dynamics leads to interactions of the PAR2 ectodomain with P and P′ sites of the FVIIa catalytic cleft as well as to electrostatic interactions between a stably folded region of PAR2 and a cluster of basic residues remote from the catalytic cleft of FVIIa. To address the functional significance of this interaction for PAR2 cleavage, we employed two antibodies with epitopes previously mapped to this cluster of basic residues. Although these antibodies do not block the catalytic cleft, both antibodies completely abrogated PAR2 activation by TF‐FVIIa. Our simulations indicate a conformation of the PAR2 ectodomain that limits the cleavage site to no more than 33 Å from its membrane proximal residue. Since the active site of FVIIa in the TF‐FVIIa complex is ~75 Å above the membrane, cleavage of the folded conformation of PAR2 would require tilting of the TF‐FVIIa complex toward the membrane, indicating that additional cellular factors may be required to properly align the scissile bond of PAR2 with TF‐FVIIa. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

17.
The formation of paired helical filaments arising from the short hexapeptide in the third repeat of tau protein, 306VQIVYK311, is critical for tau polymerisation. The atomic structure of the VQIVYK oligomer has revealed a dry, tightly self-complementing structure between the neighbouring β-sheet layers, termed as ‘steric zipper’. In this study, several molecular dynamics simulations with all-atom explicit water were conducted to investigate the structural stability and aggregation behaviour of the VQIVYK peptide with various sizes and its single alanine replacement mutations. Our results indicate that the van der Waals interaction between side chains of Q2, the π–π stacking interaction between aromatic rings of Y5, and the electrostatic interaction between K6 and the C-terminus play an important role in stabilising the VQIVYK oligomers within the same β-sheet layer, while hydrophobic steric zipper involving V1, I3 and Y5 is responsible for holding the neighbouring β-sheet layers together. The twisted angles of the VQIVYK oligomers were also analysed and shown to be size dependent. The present results not only provide atomic insights into amyloid formation, but are also helpful for designing new or modified capping peptides and inhibitors to prevent fibril formation of the VQIVYK peptide from tau protein.  相似文献   

18.
RNase A has been extensively used as a model protein in several biophysical and biochemical studies. Using the available structural and biochemical results, RNase A-UpA interaction has been computationally modeled at an atomic level. In this study, the molecular dynamics (MD) simulations of native and UpA bound RNase A have been carried out. The gross dynamical behavior and atomic fluctuations of the free and UpA bound RNase A have been characterized. Principal component analysis is carried out to identify the important modes of collective motion and to analyze the changes brought out in these modes of RNase A upon UpA binding. The hydrogen bonds are monitored to study the atomic details of RNase A-UpA interactions and RNase A-water interactions. Based on these analysis, the stability of the free and UpA bound RNase A are discussed. © 1997 John Wiley & Sons, Inc. Biopoly 42: 505–520, 1997  相似文献   

19.
The molecular interaction between common polymer chains and the cell membrane is unknown. Molecular dynamics simulations offer an emerging tool to characterise the nature of the interaction between common degradable polymer chains used in biomedical applications, such as polycaprolactone, and model cell membranes. Herein we characterise with all-atomistic and coarse-grained molecular dynamics simulations the interaction between single polycaprolactone chains of varying chain lengths with a phospholipid membrane. We find that the length of the polymer chain greatly affects the nature of interaction with the membrane, as well as the membrane properties. Furthermore, we next utilise advanced sampling techniques in molecular dynamics to characterise the two-dimensional free energy surface for the interaction of varying polymer chain lengths (short, intermediate, and long) with model cell membranes. We find that the free energy minimum shifts from the membrane-water interface to the hydrophobic core of the phospholipid membrane as a function of chain length. Finally, we perform coarse-grained molecular dynamics simulations of slightly larger membranes with polymers of the same length and characterise the results as compared with all-atomistic molecular dynamics simulations. These results can be used to design polymer chain lengths and chemistries to optimise their interaction with cell membranes at the molecular level.  相似文献   

20.
BBA1 is a designed protein that has only 23 residues. It is the smallest protein without disulfide bridges that has a well-defined tertiary structure in solution. We have performed unfolding molecular dynamics simulations on BBA1 and some of its mutants at 300, 330, 360, and 400 K to study their kinetic stability as well as the unfolding mechanism of BBA1. It was shown that the unfolding simulations can provide insights into the forces that stabilize the protein. Packing, hydrophobic interactions, and a salt bridge between Asp12 and Lys16 were found to be important to the protein's stability. The unfolding of BBA1 goes through two major steps: (1) disruption of the hydrophobic core and (2) unfolding of the helix. The beta-hairpin remains stable in the unfolding because of the high stability of the type II' turn connecting the two beta-strands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号