首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract

The structure and dynamics of phosphatidylcholine bilayers are examined by reviewing the results of several nanoseconds of molecular dynamics simulations on a number of bilayer and monolayer models. The lengths of these simulations, the longest single one of which was 2 nanoseconds, were sufficiently long to effectively sample many of the longer-scale motions governing the behaviour of biomembranes. These simulations reproduce many experimental observables well and provide a degree of resolution currently unavailable experimentally.  相似文献   

2.
Based on a rare, natural Glu for Ala-204(C+6) variant located six residues after the conserved Cys residue in extracellular loop 2b (ECL2b) associated with selective elimination of the high constitutive signaling of the ghrelin receptor, this loop was subjected to a detailed structure functional analysis. Introduction of Glu in different positions demonstrated that although the constitutive signaling was partly reduced when introduced in position 205(C+7) it was only totally eliminated in position 204(C+6). No charge-charge interaction partner could be identified for the Glu(C+6) variant despite mutational analysis of a number of potential partners in the extracellular loops and outer parts of the transmembrane segments. Systematic probing of position 204(C+6) with amino acid residues of different physicochemical properties indicated that a positively charged Lys surprisingly provided phenotypes similar to those of the negatively charged Glu residue. Computational chemistry analysis indicated that the propensity for the C-terminal segment of extracellular loop 2b to form an extended α-helix was increased from 15% in the wild type to 89 and 82% by introduction in position 204(C+6) of a Glu or a Lys residue, respectively. Moreover, the constitutive activity of the receptor was inhibited by Zn2+ binding in an engineered metal ion site, stabilizing an α-helical conformation of this loop segment. It is concluded that the high constitutive activity of the ghrelin receptor is dependent upon flexibility in the C-terminal segment of extracellular loop 2 and that mutations or ligand binding that constrains this segment and thereby conceivably the movements of transmembrane domain V relative to transmembrane domain III inhibits the high constitutive signaling.  相似文献   

3.
Molecular Dynamics (MD) simulations have been used to understand how protein structure, dynamics, and flexibility are affected by adaptation to high temperature for several years. We report here the results of the high temperature MD simulations of Bacillus stearothermophilus L1 (L1 lipase). We found that the N-terminal moiety of the enzyme showed a high flexibility and dynamics during high temperature simulations which preceded and followed by clear structural changes in two specific regions; the small domain and the main catalytic domain or core domain of the enzyme. These two domains interact with each other through a Zn2+-binding coordination with Asp-61 and Asp-238 from the core domain and His-81 and His-87 from the small domain. Interestingly, the His-81 and His-87 were among the highly fluctuated and mobile residues at high temperatures. The results appear to suggest that tight interactions of Zn2+-binding coordination with specified residues became weak at high temperature which suggests the contribution of this region to the thermostability of the enzyme. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
The SecA ATPase forms a functional complex with the protein-conducting SecY channel to translocate polypeptides across the bacterial cell membrane. SecA recognizes the translocation substrate and catalyzes its unidirectional movement through the SecY channel. The recent crystal structure of the Thermotoga maritima SecA-SecYEG complex shows the ATPase in a conformation where the nucleotide-binding domains (NBDs) have closed around a bound ADP-BeFx complex and SecA's polypeptide-binding clamp is shut. Here, we present the crystal structure of T. maritima SecA in isolation, determined in its ADP-bound form at 3.1 Å resolution. SecA alone has a drastically different conformation in which the nucleotide-binding pocket between NBD1 and NBD2 is open and the preprotein cross-linking domain has rotated away from both NBDs, thereby opening the polypeptide-binding clamp. To investigate how this clamp binds polypeptide substrates, we also determined a structure of Bacillus subtilis SecA in complex with a peptide at 2.5 Å resolution. This structure shows that the peptide augments the highly conserved β-sheet at the back of the clamp. Taken together, these structures suggest a mechanism by which ATP hydrolysis can lead to polypeptide translocation.  相似文献   

5.
Abstract

The gel to fluid phase transition or ordered to disordered phase transition observed in biological membranes are simulated by using constant energy Molecular Dynamics. The surface part of the membrane is modelled as a two-dimensional matrix formed by the head groups of the phospholipid molecules. Head molecules which are modelled as three spheres fused with three force centers, interact with each other via van der Waals and Coulomb type interactions. The -so called- impurity or foreign molecule embedded in the surface represents the protein type molecule which is present in biological membranes and control its activity. It is modelled as a pentagon having one force centers in each corner. It also interacts with the surface molecules again via van der Waals and Coulomb type interactions. The surface density is kept constant in the simulations of the systems with or without impurity. Structural and orientational changes due to impurity were observed and proved by monitoring two-dimensional order parameter. It has been shown that melting of the surface or breakage of the ordering of the surface molecules becomes easier and ordered to disordered phase transition temperature was lowered by 100 K if the impurity is present.  相似文献   

6.
阳振乐 《植物学通报》1999,16(5):511-516
本文就叶绿体光合膜中主要膜脂的分子结构及其特性和在膜中的分子组装进行了综述,并指出了目前膜脂研究的趋势和存在的问题  相似文献   

7.
Abstract

Point mutations in the human prion protein gene, leading to amino acid substitutions in the human prion protein contribute to conversion of PrPC to PrPSc and amyloid formation, resulting in prion diseases such as familial Creutzfeldt-Jakob disease (CJD), Gerstmann-Straussler-Scheinker disease (GSS), and fatal familial insomnia. We have investigated impressions of prevalent mutations including Q217R, D202N, F198S, on the human prion protein and compared the mutant models with wild types. Structural analyses of models were performed with molecular modeling and molecular dynamics simulation methods. According to our results, frequently occurred mutations are observed in conserved and fully conserved sequences of human prion protein and the most fluctuation values occur in the Helix 1 around residues 144–152 and C-terminal end of the Helix 2. Our analysis of results obtained from MD simulation clearly shows that this long-range effect plays an important role in the conformational fluctuations in mutant structures of human prion protein. Results obtained from molecular modeling such as creation or elimination of some hydrogen bonds, increase or decrease of the accessible surface area and molecular surface, loss or accumulation of negative or positive charges on specific positions, and altering the polarity and pKa values, show that amino acid point mutations, though not urgently change the stability of PrP, might have some local impacts on the protein interactions which are required for oligomerization into fibrillar species.  相似文献   

8.
Abstract

Seminalplasmin (SPLN) is a 47-residue peptide (SDEKASPDKHHRFSLSRYAKLANR LANPKLLETFLSKWIGDRGNRSV) from bovine seminal plasma. It has broad spectrum antimicrobial activity, without any hemolytic activity. The 28–40 segment of SPLN with the sequence PKLLETFLSKWIG, designated as SPF, is the most hydrophobic stretch of SPLN and primarily responsible for the membrane-perturbing activity of SPLN. It was reported that SPF has a helical structure and the interchange of E5 and K10 residues disrupted the helical structure. The present paper reports a possible mechanism of disruption of the helical structure of SPF peptide during the interchange of E5 and K10 residues. The result is based on simulated annealing and molecular dynamics simulation studies on SPF and its four analogues with K10E, K10D, E5K, and E5K & K10E substitutions. It showed that K10 residue has a critical role in maintaining the highest helical content and the positions of charged residues are also very important for maintaining the helical structure of the SPF peptide. Formation of some new long-range hydrogen bonds and the rupture of some shortrange hydrogen bonds involving the tenth residue led to the disruption of helical structure of SPF peptide when E5 and K10 residues are interchanged.  相似文献   

9.
Abstract

The structural and dynamical properties of the complete full-length structure of HIV-1 integrase were investigated using Molecular Dynamics approach. Simulations were carried out for the three systems, core domain only (CORE), full-length structure without (FULL) and with a Mg2+ (FULL+ION) in its active site, aimed to investigate the difference in the molecular properties of the full-length models due to their different construction procedures as well as the effects of the two ends, C- and N-terminal, on those properties in the core domain. The full-length structure was prepared from the two experimental structures of two-domain fragment. The following properties were observed to differ significantly from the previous reports: (i) relative topology formed by an angle between the three domains; (ii) the cavity size defined by the catalytic triad, Asp64, Asp116, and Glul52; (iii) distances and solvation of the Mg2+; and (iv) conformation of the catalytic residues. In addition, the presence of the two terminal domains decreases the mobility of the central core domain significantly.  相似文献   

10.
Abstract

An extensive conformational search in explicit solvent was performed in order to compare the influence of different long-range electrostatic interaction treatments in molecular dynamics. The short peptide endothelin-1 was selected as the subject of molecular dynamics studies that started from both X-ray and NMR obtained structures. Electrostatic interactions were treated using two of the most common methods—residue-based cutoff and particle mesh Ewald (PME). Analyses of free energy calculations (MM-PBSA method used), secondary structure elements and hydrogen bonds were performed, and there suggested that there is no unambiguous conclusion about which of the two methods of long-range electrostatics treatment should be used in MD simulations in this case. The most reliable data was provided by a trajectory that started with the NMR structure and used the cutoff method to treat electrostatic interactions. This leads to a recommendation that the choice of electrostatics treatment should be made carefully and not automatically by choosing the PME method simply because it is the most widely used.  相似文献   

11.
Abstract

A two step strategy is proposed to study dynamical properties of a physical system much slower than the time scales accessible by molecular dynamics simulations. The strategy is applied to investigate the slow dynamics of supercooled liquids.  相似文献   

12.
We have investigated structural and dynamic properties of the synthetic peptide hlF1-11 (GRRRSVQWCA, i.e., the first 11 N-terminal amino acids of the human lactoferrin protein) in water, 250 mM NaCl solution, 50% (V/V) water–trifluoroethanol mixture, and in the membrane mimetic 4:4:1 methanol–chloroform–water mixture. For comparison, we have also performed analogous simulations for the biologically inactive control peptide featuring Ala substitutions in the 2, 3, 6 and 9 positions of the hlF1-11 sequence. Statistical analyses of the trajectories indicate that only in the membrane-mimicking medium hlF1-11 adopts preferentially a conformation suitable to interact effectively with the membrane. In this conformation the peptide cationic region is rather flexible and elongated, while the C-terminal hydrophobic moiety appears as a more rigid hairpin-shaped loop approximately perpendicular to the cationic region. No such conformation is statistically relevant for the control peptide.  相似文献   

13.
The structures of three bacterial outer membrane proteins (OmpA, OmpX and PagP) have been determined by both X-ray diffraction and NMR. We have used multiple (7 × 15 ns) MD simulations to compare the conformational dynamics resulting from the X-ray versus the NMR structures, each protein being simulated in a lipid (DMPC) bilayer. Conformational drift was assessed via calculation of the root mean square deviation as a function of time. On this basis the ‘quality’ of the starting structure seems mainly to influence the simulation stability of the transmembrane β-barrel domain. Root mean square fluctuations were used to compare simulation mobility as a function of residue number. The resultant residue mobility profiles were qualitatively similar for the corresponding X-ray and NMR structure-based simulations. However, all three proteins were generally more mobile in the NMR-based than in the X-ray simulations. Principal components analysis was used to identify the dominant motions within each simulation. The first two eigenvectors (which account for >50% of the protein motion) reveal that such motions are concentrated in the extracellular loops and, in the case of PagP, in the N-terminal α-helix. Residue profiles of the magnitude of motions corresponding to the first two eigenvectors are similar for the corresponding X-ray and NMR simulations, but the directions of these motions correlate poorly reflecting incomplete sampling on a ∼10 ns timescale.  相似文献   

14.
Abstract

Mammalian defensins are crucial components of the innate immune system. They are characterized by three disulfide bridges and exhibit broad spectrum antibacterial activity. The spacing between the cysteines and disulfide connectivities in the two classes of defensins, the α- and β-forms, are different. The structural motif of 3 β-strands appears to be conserved in α and β-defensins despite differences in disulfide connectivities and spacing between cysteines. In this study, Molecular Dynamics Simulations (MDS) have been carried out to study the conformational behavior of α- and β-defensins with and without disulfide bridges. Our results indicate that β-strands in the C-terminal region of HBD-1 and HNP-3 do not unfold during the course of MDS. The segment adopting α-helix in HBD-1 unfolds early during the simulations. The backbone hydrogen bonds in HBD-1 and HNP-3 are broken during MDS. When the disulfide bonds are absent, the N-terminal β-strand unfolds by 20 ns but β-strands are observed in the C-terminal region of HNP-3. HBD-1, without disulfide bridges, unfolds to a greater extent during the course of the MDS. Examination of distances between sulfur atoms of cysteines without disulfide bridges during the simulations indicate that there is no specific preference for native disulfide bridges, which could be the reason for the experimental observation of non-native disulfide bridge formation during chemical synthesis of human α- and β-defensins. Since defensins with non-native disulfide bridges are biologically active, the exact three dimensional structures observed for native HBD-1 and HNP-3 does not appear to be essential for exhibiting antibacterial activity.  相似文献   

15.
Abstract

We studied a pair of homologous thermophilic and mesophilic ribonuclease HI enzymes by molecular dynamics simulations. Each protein was subjected to three 5 ns simulations in explicit water at both 310 K and 340 K. The thermophilic enzyme showed larger overall positional fluctuations at both temperatures, while only the mesophilic enzyme at the higher temperature showed significant instability. When the temperature is changed, the relative flexibility of different local segments on the two proteins changed differently. Principal component analysis showed that the simulations of the two proteins explored largely overlapping regions in the conformational space. However, at 340 K, the collective structure variations of the thermophilic protein are different from those of the mesophilic protein. Our results, although not in accordance with the view that hyperthermostability of proteins may originate from their conformational rigidity, are consistent with several recent experimental and simulation studies which showed that thermophilic proteins may be conformationally more flexible than their mesophilic counterparts. The decorrelation between conformational rigidity and hyperthermostability may be attributed to the temperature dependence and long range nature of electrostatic interactions that play more important roles in the structural stability of thermophilic proteins.  相似文献   

16.
Abstract

The SL1 stem-loop located in the encapsidation domain is responsible for initiating the dimerisation of HIV-1 genomic RNA by means of a loop-loop interaction known as Kissing Complex (KC). The SL1 secondary structure has been predicted as a 35 nucleotides [K. G. Murti, M. Bondurant, and A. Tereba. J Virol 37, 411–419 (1981)] stem-loop composed of a 4 base pairs (bp) terminal duplex, a 4 nt asymmetrical internal loop, a 7 bp internal duplex, and a 9 nt apical loop. Several high resolution structures of the monomer and of KC of a 23 nt sequence containing only the internal duplex and the apical loop of SL1 are available in the literature. No experimental high resolution structure of the complete native SL1 sequence has been reported so far, either for the monomer or for KC. The asymmetrical internal loop has been described from NMR studies of different monomeric hairpin sequences, leading to divergent results, which suggests its high flexibility. In this work, we built a SL135 KC model which was submitted to a 31 ns molecular dynamics simulation (MD).

Our results allows to describe the internal dynamics of SL135 KC and the differences of behavior of the different parts of the dimer. Thus, we could show the stability of the interactions between the two apical loops and of the terminal duplexes, the destabilization of the internal duplexes and the high flexibility of the asymmetrical internal loops.  相似文献   

17.
We present a simulation study where different resolutions, namely coarse-grained (CG) and all-atom (AA) molecular dynamics simulations, are used sequentially to combine the long timescale reachable by CG simulations with the high resolution of AA simulations, to describe the complete processes of peptide aggregation and pore formation by alamethicin peptides in a hydrated lipid bilayer. In the 1-μs CG simulations the peptides spontaneously aggregate in the lipid bilayer and exhibit occasional transitions between the membrane-spanning and the surface-bound configurations. One of the CG systems at t = 1 μs is reverted to an AA representation and subjected to AA simulation for 50 ns, during which water molecules penetrate the lipid bilayer through interactions with the peptide aggregates, and the membrane starts leaking water. During the AA simulation significant deviations from the α-helical structure of the peptides are observed, however, the size and arrangement of the clusters are not affected within the studied time frame. Solid-state NMR experiments designed to match closely the setup used in the molecular dynamics simulations provide strong support for our finding that alamethicin peptides adopt a diverse set of configurations in a lipid bilayer, which is in sharp contrast to the prevailing view of alamethicin oligomers formed by perfectly aligned helical alamethicin peptides in a lipid bilayer.  相似文献   

18.
It may be questioned whether potential models that have been developed independently for two different pure compounds would behave properly when used in computer simulations of mixtures of these compounds. Since they are optimized for the pure compounds there is no guarantee whatsoever that the terms describing the interaction between dissimilar molecules are correct. If the simulational and experimental values of several thermodynamical properties of the mixture relative to those of the pure compounds agree closely, however, this strongly indicates that no separate optimizations need be carried out for the mixtures. Here we present the results of isothermal-isobaric Molecular Dynamics simulations of liquid methanol, water and equimolar methanol-water mixtures, using simple point charge models. The potential parameters of the models for the pure liquids had been independently optimized. No adjustment of parameters was made for the mixture, but nonetheless the experimental volume contraction and excess enthalpy upon mixing were reproduced almost perfectly.  相似文献   

19.
Abstract

The solution conformations of two potent antagonists of bradykinin (Arg1-Pro2-Pro3-Gly4- Phe5-Ser6-Pro7-Phe8-Arg9), [Aca-1, DArg0, Hyp3, Thi5, DPhe7,(N-Bzl)Gly8]BK (1) and [Aaa- 1, DArg0, Hyp3, Thi5,(2-DNal)7, Thi8]BK (2), were studied by using 2D NMR spectroscopy in DMSO-dg and molecular dynamics simulations. The NMR spectra of peptide 1 reveals the existence of at least two isomers arising from isomerization across the DPhe7-(N-Bzl)Gly8peptide bond. The more populated isomer possesses the cis peptide bond at this position. The ratio of cis/trans isomers amounted to 7:3. With both antagonists, the NMR data indicate a β-turn structure for the Hyp3-Gly4 residues. In addition, for peptide 2, position 2,3 is likely to be occupied by turn-like structures. The cis peptide bond between DPhe7 and (N- Bzl)Gly8 in analogue 1 suggests type VI β-turn at position 7,8. The molecular dynamics runs were performed on both peptides in DMSO solution. The results indicate that the structure of peptide 1 is characterized by type VIb β-turn comprising residues Ser-Arg9 and the βI or βII-turn involving the Pro2-Thi5 fragment, whereas peptide 2 shows the tendency towards the formation of type I β-turn at position 2,3. The structures of both antagonists are stabilized by a salt bridge between the guanidine moiety of Arg1 and the carboxyl group of Arg9. Moreover, the side chain of DArg0 is apart of the rest of molecule and is not involved in structural elements except for a few calculated structures.  相似文献   

20.
Amphotericin B (AmB) is an effective but very toxic antifungal antibiotic. In our laboratory a series of AmB derivatives of improved selectivity of action was synthesized and tested. To understand molecular basis of this improvement, comparative conformational studies of amphotericin B and its two more selective derivatives were carried out in an aqueous solution and in a lipid membrane. These molecular simulation studies revealed that within a membrane environment the conformational behavior of the derivatives differs significantly from the one observed for the parent molecule. Possible reasons for such a difference are analyzed. Furthermore, we hypothesize that the observed conformational transition within the polar head of AmB derivatives may lead to destabilization of antibiotic-induced transmembrane channels. Consequently, the selective toxicity of the derivatives should increase as ergosterol-rich liquid-ordered domains are more rigid and conformationally ordered than their cholesterol-containing counterparts, and as such may better support less stable channel structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号