首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Crystals of the small ribosomal subunit from Thermus thermophilus diffract to 3A and exhibit reasonable isomorphism and moderate resistance to irradiation. A 5A MIR map of this particle shows a similar shape to the part assigned to this particle within the cryo-EM reconstructions of the whole ribosome and contains regions interpretable either as RNA chains or as protein motifs. To assist phasing at higher resolution we introduced recombinant methods aimed at extensive selenation for MAD phasing. We are focusing on several ribosomal proteins that can be quantitatively detached by chemical means. These proteins can be modified and subsequently reconstituted into depleted ribosomal cores. They also can be used for binding heavy atoms, by incorporating chemically reactive binding sites, such as -SH groups, into them. In parallel we are co-crystallizing the ribosomal particles with tailor made ligands, such as antibiotics or cDNA to which heavy-atoms have been attached or diffuse the latter compounds into already formed crystals.  相似文献   

2.
3.
Lactococcus lactis is a promising host for (membrane) protein overproduction. Here, we describe a protocol for incorporation of selenomethionine (SeMet) into proteins expressed in L. lactis. Incorporation efficiencies of SeMet in the membrane protein complex OpuA (an ABC transporter) and the soluble protein OppA, both from L. lactis, were monitored by mass spectrometry. Both proteins incorporated SeMet with high efficiencies (>90%), which greatly extends the usefulness of the expression host L. lactis for X‐ray crystallography purposes. The crystal structure of ligand‐free OppA was determined at 2.4 Å resolution by a semiautomatic approach using selenium single‐wavelength anomalous diffraction phasing.  相似文献   

4.
The methylation of U1498 located in the 16S ribosomal RNA of Escherichia coli is an important modification affecting ribosomal activity. RsmE methyltransferases methylate specifically this position in a mechanism that requires an S‐adenosyl‐L‐methionine (AdoMet) molecule as cofactor. Here we report the structure of Apo and AdoMet‐bound Lpg2936 from Legionella pneumophila at 1.5 and 2.3 Å, respectively. The protein comprises an N‐terminal PUA domain and a C‐terminal SPOUT domain. The latter is responsible for protein dimerization and cofactor binding. Comparison with similar structures suggests that Lpg2936 is an RsmE‐like enzyme that can target the equivalent of U1498 in the L. pneumophila ribosomal RNA, thereby potentially enhancing ribosomal activity during infection‐mediated effector production. The multiple copies of the enzyme found in both structures reveal a flexible conformation of the bound AdoMet ligand. Isothermal titration calorimetry measurements suggest an asymmetric two site binding mode. Our results therefore also provide unprecedented insights into AdoMet/RsmE interaction, furthering our understanding of the RsmE catalytic mechanism.  相似文献   

5.

Sulfur-containing sites in proteins are of great importance for both protein structure and function, including enzymatic catalysis, signaling pathways, and recognition of ligands and protein partners. Selenium-77 is an NMR active spin-1/2 nucleus that shares many physiochemical properties with sulfur and can be readily introduced into proteins at sulfur sites without significant perturbations to the protein structure. The sulfur-containing amino acid methionine is commonly found at protein–protein or protein–ligand binding sites. Its selenium-containing counterpart, selenomethionine, has a broad chemical shift dispersion useful for NMR-based studies of complex systems. Methods such as (1H)-77Se-13C double cross polarization or {77Se}-13C REDOR could be valuable to map the local environment around selenium sites in proteins but have not been demonstrated to date. In this work, we explore these dipolar transfer mechanisms for structural characterization of the GB1 V39SeM variant of the model protein GB1 and demonstrate that 77Se-13C based correlations can be used to map the local environment around selenium sites in proteins. We have found that the general detection limit is?~?5 Å, but longer range distances up to?~?7 Å can be observed as well. This study establishes a framework for the future characterization of selenium sites at protein–protein or protein–ligand binding interfaces.

  相似文献   

6.
7.
Our previous studies have shown that 16 S RNA can assume two different conformational forms as detected by agarose gel electrophoresis, and that these two forms vary in their ability to bind individual 30 S ribosomal proteins specifically. In this paper we show that the faster electrophoretic form can be converted to the slower electrophoretic form by the binding of either protein S4, S8, S7 or S15. The slower form can then be transformed into a fast form by heat-activating the reconstitution intermediate (RI) particle, which has been constructed under reconstitution conditions at 0 °C, to RI1. We demonstrate that the transformation of the 16 S RNA conformation by binding of protein S7 permits the subsequent binding of protein S9 following deproteination. We propose that many of the classical assembly-dependent relationships are due to induced changes in the 16 S RNA conformation.  相似文献   

8.
【目的】基质辅助激光解吸电离飞行时间质谱(MALDI-TOF MS)法基于微生物的特征蛋白指纹图谱鉴定菌种,本研究利用基因组学和MALDI-TOFMS技术鉴定放线菌纲细菌的核糖体蛋白质标志物。【方法】从MALDI-TOF MS图谱数据库选取放线菌纲代表菌种,在基因组数据库检索目标菌种,获取目标菌株或其参比菌株的核糖体蛋白质序列,计算获得分子质量理论值,用于注释目标菌株MALDI-TOFMS指纹图谱中的核糖体蛋白质信号。【结果】从8目,24科,53属,114种,142株放线菌的MALDI-TOFMS图谱中总共注释出31种核糖体蛋白质。各菌株的指纹图谱中核糖体蛋白质信号数量差异显著。各种核糖体蛋白质信号的注释次数差异显著。总共15种核糖体蛋白质在超过半数图谱中得到注释,注释次数最高的是核糖体大亚基蛋白质L36。【结论】本研究找到了放线菌纲细菌MALDI-TOF MS图谱中常见的15种核糖体蛋白质信号,可为通过识别核糖体蛋白质的质谱特征峰鉴定放线菌的方法建立提供依据。  相似文献   

9.
The binding to human lactoferrin of three Ru(III) complexes with anti-tumor activity has been investigated by X-ray crystallography in order to gain insights into how such complexes might be carried during transferrin-mediated delivery to cells. The complexes, HIm[RuIm2Cl4], HInd[RuInd2Cl4] and (HInd)2 [RuIndCl5], where Im?=?imidazole and Ind?=?indazole, were diffused into crystals of apo-lactoferrin (apoLf). X-ray diffraction data were collected to 2.6?Å, 2.2?Å and 2.4?Å respectively. The binding sites for the Ru complexes were determined from difference Fouriers, in comparison with native apoLf; the two indazole-apoLf complexes were also refined crystallographically to final R factors of 0.202 (for 8.0 to 2.3?Å data) and 0.192 (for 8.0 to 2.4?Å data) respectively. Two types of binding site were identified, a high-affinity site at His 253 in the open N-lobe iron-binding cleft of apoLf (and by analogy a similar one at His 597 in the C-lobe), and lower-affinity sites at surface-exposed His residues, primarily His 590 and His 654. The exogenous heterocyclic ligands remain bound to Ru, at least at the His 253 site, and modelling suggests that the nature and number of these ligands may determine whether the closed structure that is required for receptor binding could be formed or not. The results also highlight the importance of His residues for binding such complexes and the value of heavy atom binding studies from crystallographic analyses for identifying non-specific binding sites on proteins.  相似文献   

10.
ABSTRACT

The assignment of specific ribosomal functions to individual ribosomal proteins is difficult due to the enormous cooperativity of the ribosome; however, important roles for distinct ribosomal proteins are becoming evident. Although rRNA has a major role in certain aspects of ribosomal function, such as decoding and peptidyl-transferase activity, ribosomal proteins are nevertheless essential for the assembly and optimal functioning of the ribosome. This is particularly true in the context of interactions at the entrance pore for mRNA, for the translation-factor binding site and at the tunnel exit, where both chaperones and complexes associated with protein transport through membranes bind.  相似文献   

11.
Summary Expression of resistance to erythromycin in Escherichia coli, caused by an altered L4 protein in the 50S ribosomal subunit, can be masked when two additional ribosomal mutations affecting the 30S proteins S5 and S12 are introduced into the strain (Saltzman, Brown, and Apirion, 1974). Ribosomes from such strains bind erythromycin to the same extent as ribosomes from erythromycin sensitive parental strains (Apirion and Saltzman, 1974).Among mutants isolated for the reappearance of erythromycin resistance, kasugamycin resistant mutants were found. One such mutant was analysed and found to be due to undermethylation of the rRNA. The ribosomes of this strain do not bind erythromycin, thus there is a complete correlation between phenotype of cells with respect to erythromycin resistance and binding of erythromycin to ribosomes.Furthermore, by separating the ribosomal subunits we showed that 50S ribosomes bind or do not bind erythromycin according to their L4 protein; 50S with normal L4 bind and 50S with altered L4 do not bind erythromycin. However, the 30s ribosomes with altered S5 and S12 can restore binding in resistant 50S ribosomes while the 30S ribosomes in which the rRNA also became undermethylated did not allow erythromycin binding to occur.Thus, evidence for an intimate functional relationship between 30S and 50S ribosomal elements in the function of the ribosome could be demonstrated. These functional interrelationships concerns four ribosomal components, two proteins from the 30S ribosomal subunit, S5, and S12, one protein from the 50S subunit L4, and 16S rRNA.  相似文献   

12.
13.
We have crystallized the N-terminal actin binding domain (ABD1) of human fimbrin, a representative member of the largest class of actin crosslinking proteins. Diffraction from these crystals is consistent with the orthorhombic space group P212121 (a = 50.03 Å, b = 61.24 Å, c = 102.30 Å). These crystals contain one molecule in the asymmetric unit and diffract to at least 1.9 Å resolution. The crystal structure of ABD1 will be the first structure of an actin crosslinking domain. Proteins 28:452–453, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

14.
FtsY is the docking protein or SRα homologue in E. coli. It is involved in targeting secretory proteins to the cytoplasmic membrane by interacting with the signal recognition particle, controlled by guanosine 5′-triphosphate. Two different constructs have been used in crystallization studies: the full-length protein and a truncated fragment with a his-tag at the C terminus. Only the second construct resulted in crystals suitable for x-ray diffraction. The crystals belong to the monoclinic space group P21 with cell dimensions a = 32.20 Å, b = 79.57 Å, c = 59.21 Å, and β = 94.45, and contain one molecule per asymmetric unit. At cryogenic temperatures the crystals diffract to a resolution limit of 2.5 Å by using a rotating anode, and beyond 1.8 Å by using synchrotron radiation. Proteins 28:285–288, 1997. © 1997 Wiley-Liss Inc.  相似文献   

15.
Abstract

Proteoliposomes have been widely used for in vitro studies of membrane fusion mediated by synaptic proteins. Initially, such studies were made with large unsynchronized ensembles of vesicles. Such ensemble assays limited the insights into the SNARE-mediated fusion mechanism that could be obtained from them. Single particle microscopy experiments can alleviate many of these limitations but they pose significant technical challenges. Here we summarize various approaches that have enabled studies of fusion mediated by SNAREs and other synaptic proteins at a single-particle level. Currently available methods are described and their advantages and limitations are discussed.  相似文献   

16.
Enzymes of the glyoxylate shunt are important for the virulence of pathogenic organisms such as Mycobacterium tuberculosis and Candida albicans. Two isoforms have been identified for malate synthase, the second enzyme in the pathway. Isoform A, found in fungi and plants, comprises ~530 residues, whereas isoform G, found only in bacteria, is larger by ~200 residues. Crystal structures of malate synthase isoform G from Escherichia coli and Mycobacterium tuberculosis were previously determined at moderate resolution. Here we describe crystal structures of E. coli malate synthase A (MSA) in the apo form (1.04 Å resolution) and in complex with acetyl‐coenzyme A and a competitive inhibitor, possibly pyruvate or oxalate (1.40 Å resolution). In addition, a crystal structure for Bacillus anthracis MSA at 1.70 Å resolution is reported. The increase in size between isoforms A and G can be attributed primarily to an inserted α/β domain that may have regulatory function. Upon binding of inhibitor or substrate, several active site loops in MSA undergo large conformational changes. However, in the substrate bound form, the active sites of isoforms A and G from E. coli are nearly identical. Considering that inhibitors bind with very similar affinities to both isoforms, MSA is as an excellent platform for high‐resolution structural studies and drug discovery efforts.  相似文献   

17.
The flagellar motor is an important virulence factor in infection by many bacterial pathogens. Motor function can be modulated by chemotactic proteins and recently appreciated proteins that are not part of the flagellar or chemotaxis systems. How these latter proteins affect flagellar activity is not fully understood. Here, we identified spermidine synthase SpeE as an interacting partner of switch protein FliM in Helicobacter pylori using pull‐down assay and mass spectrometry. To understand how SpeE contributes to flagellar motility, a speE‐null mutant was generated and its motility behavior was evaluated. We found that deletion of SpeE did not affect flagellar formation, but induced clockwise rotation bias. We further determined the crystal structure of the FliM‐SpeE complex at 2.7 Å resolution. SpeE dimer binds to FliM with micromolar binding affinity, and their interaction is mediated through the β1' and β2' region of FliM middle domain. The FliM‐SpeE binding interface partially overlaps with the FliM surface that interacts with FliG and is essential for proper flagellar rotational switching. By a combination of protein sequence conservation analysis and pull‐down assays using FliM and SpeE orthologues in E. coli, our data suggest that FliM‐SpeE association is unique to Helicobacter species.  相似文献   

18.
Summary To facilitate mapping of ribosomal protein genes in Bacillus subtilis, a selection was devised which gave rise to strains with alterations in any one of a variety or ribosomal proteins. Alterations in eighteen ribosomal proteins were identified when eighty mutants were analysed. In addition, one strain showed a major assembly defect in the large ribosomal subunit resulting in the presence of a particle sedimenting at about 40S. Eighteen large subunit proteins were present on this particle in normal amounts, while twelve proteins were much reduced in amount or undetectible.  相似文献   

19.
Studies of ribosome structure in thermophilic archaebacteria may provide valuable information on (i) the mechanisms involved in the stabilization of nucleic acid-protein complexes at high temperatures and (ii) the degree of evolutionary conservation of the ribosomal components in the primary kingdoms of cell descent. In this work we investigate certain aspects of RNA/protein interaction within the large ribosomal subunits of the extremely thermophilic archaebacterium Sulfolobus solfataricus. The ribosomal proteins involved in the early reactions leading to in vitro particle assembly have been identified; it is shown that they can interact with the RNA in a temperature-independent fashion, forming a thermally stable "core" particle that can subsequently be converted into complete 50 S ribosomes. Among the protein components of the core particle, those capable of independently binding to 23 and 5 S RNA species have also been identified. Finally, we show that the early assembly proteins of Sulfolobus large ribosomal subunits are able to interact cooperatively with 23 S RNAs from other archaebacteria or from eubacteria, thereby suggesting that RNA/protein recognition sites are largely conserved within prokaryotic ribosomes. By contrast, no specific binding of the archaebacterial proteins to eukaryotic RNA could be demonstrated.  相似文献   

20.
Inosine-5′-monophosphate dehydrogenase (IMPDH) from the protozoan parasite Tritrichomonas foetus has been expressed in E. coli and crystallized. Crystals were grown to 0.1 mm in each dimension in 18 to 72 h using ammonium sulfate and low-molecular-weight polyethylene glycols. The crystals belong to the cubic space group P432 with unit cell edge = 157.25 Å. The enzyme is a homotetramer with each monomer having a molecular weight of 55,534 Da. There is one monomer per asymmetric unit, based on a volume/mass ratio of 2.7 Å3/Da and self-rotation analysis. The crystals are adequately stable to allow a complete data set to be collected from a single crystal. Complete native data sets have been collected to 2.3 Å resolution at 4°C using synchrotron radiation. High-quality complete data extending to 3.0 Å resolution have been collected from crystals of four putative derivatives, and the data appear to be isomorphous with that of the native crystals in each case. Efforts to solve the derivatives for use in MIR phasing are underway. © 1995 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号