首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this report we are examining how the antioxidant flavonoids can prevent DNA damage and what mechanism of action is involved in the process. Flavonoids are strong antioxidants that prevent DNA damage. The anticancer and antiviral activities of these natural products are implicated in their mechanism of actions. We study the interactions of quercetin (que), kaempferol (kae), and delphinidin (del) with DNA and transfer RNA in aqueous solution at physiological conditions, using constant DNA or RNA concentration 6.25 mmol (phosphate) and various pigment/polynucleotide(phosphate) ratios of 1/65 to 1 (DNA) and 1/48 to 1/8 (tRNA). The structural analysis showed quercetin, kaempferol, and delphinidin intercalate DNA and RNA duplexes with minor external binding to the major or minor groove and the backbone phosphate group with overall binding constants for DNA adducts K que = 7.25 (±0.65) × 104 M−1, K kae = 3.60 (±0.33) × 104 M−1, and K del = 1.66 (±0.25) × 104 M−1 and for tRNA adducts K que = 4.80 (±0.50) × 104 M−1, K kae = 4.65 (±0.45) × 104 M−1, and K del = 9.47 (±0.70) × 104 M−1. The stability of adduct formation is in the order of del>que>kae for tRNA and que>kae>del for DNA. Low flavonoid concentration induces helical stabilization, whereas high pigment content causes helix opening. A partial B to A-DNA transition occurs at high drug concentration, while tRNA remains in A-family structure. The antioxidant activity of flavonoids changes in order delphinidin>quercetin>kaempferol. The results show intercalated flavonoids can make them strong antioxidants to protect DNA from harmful free radical reactions.  相似文献   

2.
Flavonoids are strong antioxidants that prevent DNA damage. The anticancer and antiviral activities of these natural products are implicated in their mechanism of actions. However, there has been no information on the interactions of these antioxidants with individual DNA at molecular level. This study was designed to examine the interaction of quercetin (que), kaempferol (kae), and delphinidin (del) with calf-thymus DNA in aqueous solution at physiological conditions, using constant DNA concentration (6.5 mmol) and various drug/DNA(phosphate) ratios of 1/65 to 1. FTIR and UV-Visible difference spectroscopic methods are used to determine the drug binding sites, the binding constants and the effects of drug complexation on the stability and conformation of DNA duplex. Structural analysis showed quercetin, kaempferol, and delphinidin bind weakly to adenine, guanine (major groove), and thymine (minor groove) bases, as well as to the backbone phosphate group with overall binding constants K(que) = 7.25 x 10(4)M(-1), K(kae) = 3.60 x 10(4)M(-1), and K(del) = 1.66 x 10(4)M(-1). The stability of adduct formation is in the order of que>kae>del. Delphinidin with a positive charge induces more stabilizing effect on DNA duplex than quercetin and kaempferol. A partial B to A-DNA transition occurs at high drug concentrations.  相似文献   

3.
Abstract

Saffron is the red dried stigmas of Crocus sativus L. flowers and used both as a spice and as a drug in traditional therapeutic. The biological activity of saffron in modern medicine is in development. Its numerous applications as an anti-oxidant and anti-cancer agent are due to its secondary metabolites and their derivatives (safranal, crocins, crocetin, dimethylcrocetin). The aim of this study was to examine the interaction of transfer RNA with safranal, crocetin, and dimethylcrocetin in aqueous solution at physiological conditions. Constant tRNA concentration (6.25 mM) and various drug/tRNA (phosphate) molar ratios of 1/48 to 1/8 were used. FT-IR and UV-Visible difference spectroscopic methods have been applied to determine the drug binding mode, the binding constants and the effects of drug complexation on the stability and conformation of tRNA duplex. External binding mode was observed for safranal crocetin and dimethylcrocetin, with overall binding constants Ksafranal = 6.8 (± 0.34) × 103 M?1, KCRT = 1.4 (± 0.31) × 104 M?1, and KDMCRT = 3.4 (± 0.30) × 104 M?1. Transfer RNA remains in the A-family structure, upon safranal, crocetin and dimethylcrocetin complexation.  相似文献   

4.
Binding affinities of flavonols namely quercetin, myricetin, and kaempferol to human serum albumin (HSA) were determined fluorimetrically and the order was observed to be myricetin > quercetin > kaempferol demonstrating structure–activity relationship. Quercetin-coated silver nanoparticles (AgNPs) show higher binding affinity to HSA compared to free quercetin with binding constants 6.04 × 107 M?1 and 4.2 × 106 M?1, respectively. Using site-specific markers it is concluded that free quercetin and that coated on AgNPs bind at different sites. Significant structural changes in circular dichroism (CD) spectra of HSA were recorded with quercetin-coated AgNPs compared to free quercetin. These results were further substantiated by time-resolved fluorescence spectroscopy where fluorescence life time of the tryptophan residue in HSA–quercetin-coated AgNPs complex decreased to 3.63 ns from 4.22 ns in HSA–quercetin complex. Isothermal calorimetric studies reveal two binding modes for quercetin-coated AgNPs and also higher binding constants compared to free quercetin. These higher binding affinities are attributed to altered properties of quercetin when coated on AgNPs enabling it to reach the binding sites other than site II where free quercetin mainly binds.  相似文献   

5.
Antioxidants are essential to good health. Flavonoids are powerful antioxidants, and prevent DNA damage. The antioxidative protections are related to their binding modes to a DNA duplex and complexation with free radicals in vivo. Recently we reported the interaction of flavonoids with DNA in vitro (Kanakis et al., J. Biomol. Struct. Dyn. 22, 719-724, 2005), where polyphenol different binding modes were discussed. The aim of this study was to examine the interaction of transfer RNA with quercetin (que), kaempferol (kae), and delphinidin (del) in aqueous solution at physiological conditions and to make a comparison with the corresponding pigment-DNA adducts. Constant tRNA concentration (6.25 mM) and various drug/RNA(phosphate) molar ratios of 1/48 to 1/8 were used. FTIR and UV-visible difference spectroscopic methods have been applied to determine the drug binding mode, the binding constants, and the effects of drug complexation on the stability and conformation of tRNA duplex. Both intercalative and external binding modes were observed. Structural analysis showed que, kae, and a del intercalate tRNA duplex with minor external binding to the major or minor groove and the backbone phosphate group with overall binding constants K (que) = 4.80 x 10(4) M(1), K (kae) = 4.65 x 10(4) M(1), and K (del) = 9.47 x 10(4) M(1). The stability of adduct formation is in the order of del > que > kae. A comparison with flavonoids-DNA adducts showed both intercalation and external bindings with the stability order K (que) = 7.25 x 10(4) M(1), K (kae) = 3.60 x 10(4) M(1), and K (del) = 1.66 x 10(4) M(1). Low flavonoid concentration induces helical stabilization, whereas high pigment content causes helix opening. A partial Bto A-DNA transition occurs at high drug concentration, while tRNA remains in the A-family structure.  相似文献   

6.
Small molecules with DNA-binding affinity within the minor groove have become of great interest. In this paper, new DNA binding molecules; diamino-bistetrahydrofuran (bisTHF) and diamino-bisfuran are reported. The bisTHF ligand with RR configuration at the amino groups and C8 alkyl chains (RR8) stabilized GC-rich duplex. In contrast, bisfuran compounds stabilized AT-rich duplex. The binding affinity of RR8 with 12 mer duplex DNA was determined by isothermal titration calorimetry to be 3.3 × 108 M?1.  相似文献   

7.
Monomeric, dimeric, and trimeric derivatives of the triphenylmethane dye crystal violet (1a1f) have been synthesized for the purpose of evaluating their affinity and sequence selectivity for duplex DNA. Competitive ethidum displacement assays indicate that 1a1f have apparent association constants for CT DNA in the range of 1.80–16.2 × 107 M−1 and binding site sizes of 10–14 bp. Viscosity experiments performed on ligand 1f confirmed that these dyes associate with duplex DNA by a non-intercalative mode of binding. Circular dichroism and competition binding studies of the tightest binding ligand 1e with known major and minor groove binding molecules suggest that these dye derivatives likely occupy the major groove of DNA. Data from the binding of 1e to polynucleotides indicate close to an order of magnitude preference for associating with AT rich homopolymers over GC rich homopolymers, suggesting a shape-selective match of the sterically bulky ligand with DNA containing a wider major groove.  相似文献   

8.
Ferrocene‐incorporated selenoureas 1‐(4‐methoxybenzoyl)‐3‐(4‐ferrocenylphenyl)selenourea (P4Me), 1‐(3‐methoxybenzoyl)‐3‐(4‐ferrocenylphenyl)selenourea (P3Me), and 1‐(2‐methoxybenzoyl)‐3‐(4‐ferrocenylphenyl)selenourea (P2Me) were synthesized and characterized by nuclear magnetic resonance, Fourier transform infrared spectroscopy, atomic absorption spectroscopy, CHNS, and single‐crystal X‐ray diffraction. DNA interaction of the compounds was investigated with cyclic voltammetry, UV–visible spectroscopy, and viscometry, which is a prerequisite for anticancer agents. Drug‐DNA binding constant was found to vary in the sequence: KP4Me (4.9000 × 104 M?1) > KP2Me (2.318 × 104 M?1) > KP3Me (1.296 × 104 M?1). Antioxidant (1,1‐diphenyl‐2‐picrylhydrazyl), antifungal (against Faussarium solani and Helmentosporium sativum), and antibacterial (against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Bacillus subtilis) activities have also been reported in addition.  相似文献   

9.
Abstract

The chemistry of Co(II) complexes showing efficient light induced DNA cleavage activity, binding propensity to calf thymus DNA and antibacterial PDT is summarized in this article. Complexes of formulation [Co(mqt)(B)2]ClO4 1–3 where mqt is 4-methylquinoline-2-thiol and B is N,N-donor heterocyclic base, viz. 1,10-phenanthroline (phen 1), dipyrido[3,2-d:2′,3′-f]quinoxaline (dpq 2) and dipyrido[3,2-a:2′,3′-c]phenazine (dppz 3) have been prepared and characterized. The DNA-binding behaviors of these three complexes were explored by absorption spectra, viscosity measurements and thermal denaturation studies. The DNA binding constants for complexes 1, 2 and 3 were determined to be 1.6?×?103?M?1, 1.1?×?104?M?1 and 6.4?×?104?M?1 respectively. The experimental results suggest that these complexes interact with DNA through groove binding mode. The complexes show significant photocleavage of supercoiled (SC) DNA proceeds via a type-II process forming singlet oxygen as the reactive species. Antimicrobial photodynamic therapy was studied using photodynamic antimicrobial chemotherapy (PACT) assay against E. coli and all complexes exhibited significant reduction in bacterial growth on photoirradiation.  相似文献   

10.
The interaction mechanism and binding mode of capecitabine with ctDNA was extensively investigated using docking and molecular dynamics simulations, fluorescence and circular dichroism (CD) spectroscopy, DNA thermal denaturation studies, and viscosity measurements. The possible binding mode and acting forces on the combination between capecitabine and DNA had been predicted through molecular simulation. Results indicated that capecitabine could relatively locate stably in the G-C base-pairs-rich DNA minor groove by hydrogen bond and several weaker nonbonding forces. Fluorescence spectroscopy and fluorescence lifetime measurements confirmed that the quenching was static caused by ground state complex formation. This phenomenon indicated the formation of a complex between capecitabine and ctDNA. Fluorescence data showed that the binding constants of the complex were approximately 2 × 104 M?1. Calculated thermodynamic parameters suggested that hydrogen bond was the main force during binding, which were consistent with theoretical results. Moreover, CD spectroscopy, DNA melting studies, and viscosity measurements corroborated a groove binding mode of capecitabine with ctDNA. This binding had no effect on B-DNA conformation.  相似文献   

11.
12.
Herein, we investigated new phthalimide‐based Schiff base molecules as promising DNA‐binding and free radical scavenging agents. Physicochemical properties of these molecules were demonstrated on the basis of elemental analysis, ultraviolet–visible (UV–Vis), infra‐red (IR), 1H and 13C nuclear magnetic resonance (NMR) spectroscopy. All spectral data are agreed well with the proposed Schiff base framework. The DNA‐binding potential of synthesized compounds were investigated by means of UV–visible, fluorescence, iodide quenching, circular dichroism, viscosity and thermal denaturation studies. The intrinsic binding constants (K b) were calculated from absorption studies were found to be 1.1 × 104 and 1.0 × 104 M?1 for compounds 2a and 2b suggesting that compound 2a binding abilities with DNA were stronger than the compound 2b. Our studies showed that the presented compounds interact with DNA through groove binding. Molecular docking studies were carried out to predict the binding between Ct‐DNA and test compounds. Interestingly, in silico predictions were corroborated with in vitro DNA‐binding conclusions. Furthermore, the title compounds displayed remarkable antioxidant activity compared with reference standard.  相似文献   

13.
Novel enamine derivatives were synthesized from the reaction of lactone and chalcones and their antiproliferative and cytotoxic activities against six cancer cell lines (e. g., HeLa, HT29, A549, MCF7, PC3 and Hep3B) and one normal cell lines (e. g., FL) were investigated along with their mode of interactions with CT‐DNA. Most of the enamine derivatives with IC50 values of 86–168 μM demonstrated much stronger antiproliferative activity than the starting molecules against the cancer cells. While, among the enamine derivatives, four compounds displayed higher cytotoxic potency than the control drugs (5‐fluorouracil and cisplatin) against the Hep3B cell lines, these compounds did not exhibit any significant toxicity against normal cells, FL. The UV/VIS spectral data suggest that eight compounds cause hypochromism with a slight bathochromic shift (~6 nm), indicating that they bind to the DNA by way of an intercalative or minor groove binding mode. The binding constants of the compounds are in the range of 0.1×103 M?1–2.3×104 M?1. The antiproliferative activity of studied enamine derivatives could possibly be due to their DNA binding as well as their cytotoxic properties. In addition to these assays, the chalcones and enamine derivatives were investigated by molecular docking to calculate the synergistic effect of antiproliferative activities against six human cancer cell lines.  相似文献   

14.
Natural anthraquinone compounds have emerged as potent anticancer chemotherapeutic agents because of their promising DNA‐binding properties. Aloe vera is among one of the very well‐known medicinal plants, and the anthraquinone derivatives like aloe emodin (ALM), aloins (ALN), and aloe emodin‐8‐glucoside (ALMG) are known to have immense biological activities. Here, we have used biophysical methods to elucidate the comparative DNA‐binding abilities of these three molecules. Steady‐state fluorescence study indicated complexation between calf thymus DNA (ctDNA) and both the molecules ALM and ALMG whereas ALN showed very weak interaction with DNA. Displacement assays with ctDNA‐bound intercalator (ethidium bromide) and a groove binder (Hoechst 33258) indicated preferential binding of both ALM and ALMG to minor groove of DNA. Isothermal titration calorimetric (ITC) data suggested spontaneous exothermic single binding mode of both the molecules: ALM and ALMG. Entropy is the most important factor which contributed to the standard molar Gibbs energy associated with relatively small favorable enthalpic contribution. The equilibrium constants of binding to ctDNA were (6.02 ± 0.10) × 104 M?1 and (4.90 ± 0.11) × 104 M?1 at 298.15 K, for ALM and ALMG, respectively. The enthalpy vs temperature plot yielded negative standard molar heat capacity value, and a strong negative correlation between enthalpy and entropy terms was observed which indicates the enthalpy entropy compensation behavior in both systems. All these thermodynamic phenomena indicate that hydrophobic force is the key factor which is involved in the binding process. Moreover, the enhancement of thermal stability of DNA helix by ALM and ALMG fully agreed to the complexation of these molecules with DNA.  相似文献   

15.
16.
Abstract

Azo linked salicyldehyde and a new 2-hydroxy acetophenone based ligands (HL1 and HL2) with their copper(II) complexes [Cu(L1)2] (1) and [Cu(L2)2] (2) were synthesized and characterized by spectroscopic methods such as 1H, 13C NMR, UV–Vis spectroscopy and elemental analyses. Calculation based on Density Functional Theory (DFT), have been performed to obtain optimized structures. Binding studies of these copper (II) complexes with calf thymus DNA (ct-DNA) and torula yeast RNA (t-RNA) were analyzed by absorption spectra, emission spectra and Viscosity studies and Molecular Docking techniques. The absorption spectral study indicated that the copper(II) complexes of 1 and 2 had intrinsic binding constants with DNA or RNA in the range of 7.6?±?0.2?×?103?M?1 or 6.5?±?0.3?×?103M?1 and 5.7?±?0.4?×?104 M?1 or 1.8?±?0.5?×?103 M?1 respectively. The synthesized compounds and nucleic acids were simulated by molecular docking to explore more details mode of interaction of the complexes and their orientations in the active site of the receptor.  相似文献   

17.
Four complexes [Pd(L)(bipy)Cl]·4H2O (1), [Pd(L)(phen)Cl]·4H2O (2), [Pt(L)(bipy)Cl]·4H2O (3), and [Pt(L)(phen)Cl]·4H2O (4), where L = quinolinic acid, bipy = 2,2’-bipyridyl, and phen = 1,10-phenanthroline, have been synthesized and characterized using IR, 1H NMR, elemental analysis, and single-crystal X-ray diffractometry. The binding of the complexes to FS-DNA was investigated by electronic absorption titration and fluorescence spectroscopy. The results indicate that the complexes bind to FS-DNA in an intercalative mode and the intrinsic binding constants K of the title complexes with FS-DNA are about 3.5?×?104 M?1, 3.9?×?104 M?1, 6.1?×?104 M?1, and 1.4?×?105 M?1, respectively. Also, the four complexes bind to DNA with different binding affinities, in descending order: complex 4, complex 3, complex 2, complex 1. Gel electrophoresis assay demonstrated the ability of the Pt(II) complexes to cleave pBR322 plasmid DNA.  相似文献   

18.
Interaction of the food additive tartrazine with double-stranded DNA was studied by spectroscopic and calorimetric techniques. Absorbance studies revealed that tartrazine exhibited hypochromism in the presence of DNA without any bathochromic effects. Minor groove displacement assay of DAPI and Hoechst 33258 suggested that tartrazine binds in the minor groove of DNA. The complexation was predominantly entropy driven with a smaller but favorable enthalpic contribution to the standard molar Gibbs energy. The equilibrium constant was evaluated to be (3.68?±?.08)?×?104?M?1 at 298.15?K. The negative standard molar heat capacity value along with an enthalpy–entropy compensation phenomenon proposed the involvement of dominant hydrophobic forces in the binding process. Tartrazine enhanced the thermal stability of DNA by 7.53?K under saturation conditions.  相似文献   

19.
Porphyrins are a chemical class that is widely used in drug design. Cationic porphyrins may bind to DNA guanine quadruplexes. We report the parameters of the binding of 5,10,15,20-tetrakis(N-carboxymethyl-4-pyridinium) porphyrin (P1) and 5,10,15,20-tetrakis(N-etoxycarbonylmethyl-4-pyridinium) porphyrin (P2) to antiparallel telomeric G-quadruplex formed by d(TTAGGG)4 sequence (TelQ). The binding constants (K i ) and the number of binding sites (N j ) were determined from absorption isotherms generated from the absorption spectra of complexes of P1 and P2 with TelQ. Compound P1 demonstrated a high affinity to TelQ (K i = (40 ± 6) × 106 M?1, N 1 = 1; K 2 = (5.4 ± 0.4) × 106 M?1, N 2 = 2). In contrast, the binding constants of P2-TelQ complexes (K 1 = (3.1 ± 0.2) × 106 M?1, N 1 = 1; K 2 = (1.2 ± 0.2) × 106 M?1, N 2 = 2) were one order of magnitude smaller than the corresponding values for P2-TelQ complexes. Measurements of the quantum yield and fluorescence lifetime of the drug’s TelQ complexes revealed two types of binding sites for P1 and P2 on the quadruplex oligonucleotide. We concluded that strong complexes can result from the interaction of the porphyrins with TTA loops whereas the weaker complexes are formed with G-quartets. The altered TelQ conformation detected by the circular dichroism spectra of P1-TelQ complexes can be explained by the disruption of the G-quartet. We conclude that peripheral carboxy groups contribute to the high affinity of P1 for the antiparallel telomeric G-quadruplex.  相似文献   

20.
The interaction between DNA and furazolidone/furacillin was investigated using various analytical techniques including spectroscopy and electroanalysis and molecular modelling. With the aid of acridine orange (AO), the fluorescence lifetimes of DNA–AO, DNA–furazolidone/furacillin–AO remained almost the same, which proved that the ground state complex was formed due to furazolidone/furacillin binding with DNA. Circular dichroism spectra and Fourier transform infrared spectroscopy showed that the second structure of DNA changed. Viscosity experiments presented that relative viscosity of DNA was increased with the increasing concentrations of furazolidone and almost unchanged for furacilin. In addition, the results of melting temperature (Tm), ionic strength, site competition experiments, cyclic voltammetry, and molecular docking all proved the intercalation binding mode for furazolidone and groove binding mode for furacilin. The binding constants (Ka) obtained from Wolfe–Shimmer equation were calculated as 3.66 × 104 L mol?1 and 3.95 × 104 L mol?1 for furazolidone–DNA and furacilin–DNA, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号