首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cyclic nucleotide-gated (CNG) ion channels mediate sensory transduction in olfactory sensory neurons and retinal photoreceptor cells. In these systems, internal calcium/calmodulin (Ca2+/CaM) inhibits CNG channels, thereby having a putative role in sensory adaptation. Functional differences in Ca2+/CaM-dependent inhibition depend on the different subunit composition of olfactory and rod CNG channels. Recent evidence shows that three subunit types (CNGA2, CNGA4, and CNGB1b) make up native olfactory CNG channels and account for the fast inhibition of native channels by Ca2+/CaM. In contrast, two subunit types (CNGA1 and CNGB1) appear sufficient to mirror the native properties of rod CNG channels, including the inhibition by Ca2+/CaM. Within CNG channel tetramers, specific subunit interactions also mediate Ca2+/CaM-dependent inhibition. In olfactory CNGA2 channels, Ca2+/CaM binds to an N-terminal region and disrupts an interaction between the N- and C-terminal regions, causing inhibition. Ca2+/CaM also binds the N-terminal region of CNGB1 subunits and disrupts an intersubunit, N- and C-terminal interaction between CNGB1 and CNGA1 subunits in rod channels. However, the precise N- and C-terminal regions that form these interactions in olfactory channels are different from those in rod channels. Here, we will review recent advances in understanding the subunit composition and the mechanisms and roles for Ca2+/CaM-dependent inhibition in olfactory and rod CNG channels.  相似文献   

2.
Calmodulin (CaM), the primary receptor for intracellular Ca2+, regulates a large number of key enzymes and controls a wide spectrum of important biological responses. Olfactory cyclic nucleotide-gated ion channels (OLF channels) mediate olfactory transduction in olfactory receptor neurons. The opening of OLF leads to a rise in cytosolic concentration of Ca2+, upon binding to Ca2+, CaM disrupts the open conformation by binding to the CaM-binding domain in the N-terminal region and triggers the close mechanism. In order to unravel the regulatory role of CaM from structural point of view, NMR techniques were used to characterize the structure of CaM in association with the CaM binding domain of rat OLF channel (OLFp, 28 residues). Our data indicated that two distinct CaM/OLFp complexes existed simultaneously with stable structures that were not inter-exchangeable within the NMR time scale. Here, we report the full backbone and side chain resonance assignments of these two complexes of CaM/OLFp.  相似文献   

3.
We report the computational redesign of the protein-binding interface of calmodulin (CaM), a small, ubiquitous Ca(2+)-binding protein that is known to bind to and regulate a variety of functionally and structurally diverse proteins. The CaM binding interface was optimized to improve binding specificity towards one of its natural targets, smooth muscle myosin light chain kinase (smMLCK). The optimization was performed using optimization of rotamers by iterative techniques (ORBIT), a protein design program that utilizes a physically based force-field and the Dead-End Elimination theorem to compute sequences that are optimal for a given protein scaffold. Starting from the structure of the CaM-smMLCK complex, the program considered 10(22) amino acid residue sequences to obtain the lowest-energy CaM sequence. The resulting eightfold mutant, CaM_8, was constructed and tested for binding to a set of seven CaM target peptides. CaM_8 displayed high binding affinity to the smMLCK peptide (1.3nM), similar to that of the wild-type protein (1.8nM). The affinity of CaM_8 to six other target peptides was reduced, as intended, by 1.5-fold to 86-fold. Hence, CaM_8 exhibited increased binding specificity, preferring the smMLCK peptide to the other targets. Studies of this type may increase our understanding of the origins of binding specificity in protein-ligand complexes and may provide valuable information that can be used in the design of novel protein receptors and/or ligands.  相似文献   

4.
Calmodulin of Saccharomyces cerevisiae has different Ca2+ binding properties from other calmodulins. We previously reported that the maximum number of Ca2+ binding was 3 mol/mol and the fourth binding site was defective, which was different from 4 mol/mol for others. Their macroscopic dissociation constants suggested the cooperative three Ca2+ bindings rather than a pair of cooperative two Ca2+ bindings of ordinary calmodulin. Here we present evidence for yeast calmodulin showing the intramolecular close interaction between the N-terminal half domain and the C-terminal half domain, while the two domains of ordinary calmodulin are independent of each other. We will discuss the relationship of the shape and the shape change caused by the Ca2+ binding to the enzyme activation in yeast. The functional feature of calmodulin in yeast will also be considered, which might be different from the one of vertebrate calmodulin.  相似文献   

5.
The NMR high-resolution structure of calmodulin complexed with a fragment of the olfactory cyclic-nucleotide gated channel is described. This structure shows features that are unique for this complex, including an active role of the linker connecting the N- and C-lobes of calmodulin upon binding of the peptide. Such linker is not only involved in the formation of an hydrophobic pocket to accommodate a bulky peptide residue, but it also provides a positively charged region complementary to a negative charge of the target. This complex of calmodulin with a target not belonging to the kinase family was used to test the residual dipolar coupling (RDC) approach for the determination of calmodulin binding modes to peptides. Although the complex here characterized belongs to the (1--14) family, high Q values were obtained with all the 1:1 complexes for which crystalline structures are available. Reduction of the RDC data set used for the correlation analysis to structured regions of the complex allowed a clear identification of the binding mode. Excluded regions comprise calcium binding loops and loops connecting the EF-hand motifs.Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1007/s10858-005-0165-1.  相似文献   

6.
Metal ion binding to calmodulin: NMR and fluorescence studies   总被引:13,自引:0,他引:13  
Calmodulin is an important second messenger protein which is involved in a large variety of cellular path-ways.Calmodulin is sensitive to fluctuations in the intracellular Ca levels and is activated by the bindingof four Ca ions. In spite of the important role it plays in signal transduction pathways, it shows a surpris-inglybroad specificity for binding metal ions. Using 15N-Gly biosynthetically-labelled calmodulin, we havestudied the binding of different metal ions to calmodulin, including K+, Na+, Ca, Mg, Zn, Cd, Pb, Hg, Sr, La and Lu, by 1H, 15N HMQC NMR experiments. The effects of these ions on the substrate-bindingability of calmodulin have also been studied by fluorescence spectroscopy of the single tryptophan residue in a 22-residue synthetic peptide encompassing the skeletal muscle myosin light chain kinase calmod-ulin-binding domain. Most of these metal ions can activate a calmodulin target enzyme to some extent,though they bind to calmodulin in a different manner. Mg, which is of direct physiological interest, has adistinct site-preference for calmodulin, as it shows the highest affinity for site I in the N-terminal domain,while the C-terminal sites III and IV are the high affinity binding sites for Ca (as well as for Cd ). At ahigh concentration of Mg and a low concentration of Ca, calmodulin can bind Mg in its N-terminallobe while the C-terminal domain is occupied by Ca; this species could exist in resting cells in which the Mg level significantly exceeds that of Ca. Moreover, our data suggest that the toxicity of Pb-which,like Sr, binds with an equal and high affinity to all four sites-may be related to its capacity to tightlybind and improperly activate calmodulin.  相似文献   

7.
Nef of HIV-1 interacts directly with calcium-bound calmodulin   总被引:5,自引:0,他引:5  
It was recently found that the myristoyl group of CAP-23/NAP-22, a neuron-specific protein kinase C substrate, is essential for the interaction between the protein and Ca(2+)-bound calmodulin (Ca(2+)/CaM). Based on the N-terminal amino acid sequence alignment of CAP-23/NAP-22 and other myristoylated proteins, including the Nef protein from human immunodeficiency virus (HIV), we proposed a new hypothesis that the protein myristoylation plays important roles in protein-calmodulin interactions. To investigate the possibility of direct interaction between Nef and calmodulin, we performed structural studies of Ca(2+)/CaM in the presence of a myristoylated peptide corresponding to the N-terminal region of Nef. The dissociation constant between Ca(2+)/CaM and the myristoylated Nef peptide was determined to be 13.7 nM by fluorescence spectroscopy analyses. The NMR experiments indicated that the chemical shifts of some residues on and around the hydrophobic clefts of Ca(2+)/CaM changed markedly in the Ca(2+)/CaM-Nef peptide complex with the molar ratio of 1:2. Correspondingly, the radius of gyration determined by the small angle X-ray scattering measurements is 2-3 A smaller that of Ca(2+)/CaM alone. These results demonstrate clearly that Nef interacts directly with Ca(2+)/CaM.  相似文献   

8.
Köhler C  Neuhaus G 《FEBS letters》2000,471(2-3):133-136
The recently identified cyclic nucleotide-gated ion channels (AtCNGCs) from Arabidopsis thaliana have the ability to bind calmodulin. Using two different methods, we mapped the binding site of AtCNGC1 to the last predicted alpha helix of the cyclic nucleotide binding domain. This is in contrast to CNGCs from animals, where the calmodulin binding site is located in the N-terminus, implying that different mechanisms for CNGC modulation have evolved in animals and plants. Furthermore, we demonstrate that AtCNGC1 and AtCNGC2 have different calmodulin binding affinities and we provide evidence for target specificities among calmodulin isoforms.  相似文献   

9.
Mg2+ binds to calmodulin without inducing the changes in secondary structure that are characteristic of Ca2+ binding, or the exposure of hydrophobic surfaces that are involved in typical Ca2+-dependent target interactions. The binding of Mg2+ does, however, produce significant spectroscopic changes in residues located in the Ca2+-binding loops, and the Mg-calmodulin complex is significantly different from apo-calmodulin in loop conformation. Direct measurement of Mg2+ binding constants, and the effects of Mg2+ on Ca2+ binding to calmodulin, are consistent with specific binding of Mg2+, in competition with Ca2+. Mg2+ increases the thermodynamic stability of calmodulin, and we conclude that under resting, nonstimulated conditions, cellular Mg2+ has a direct role in conferring stability on both domains of apo-calmodulin. Apo-calmodulin binds typical target sequences from skeletal muscle myosin light chain kinase and neuromodulin with Kd approximately 70-90 nM (at low ionic strength). These affinities are virtually unchanged by 5 mM Mg2+, in marked contrast to the strong enhancement of peptide affinity induced by Ca2+. Under conditions of stimulation and increased [Ca2+], Mg2+ has a role in directing the mode of initial target binding preferentially to the C-domain of calmodulin, due to the opposite relative affinities for binding of Ca2+ and Mg2+ to the two domains. Mg2+ thus amplifies the intrinsic differences of the domains, in a target specific manner. It also contributes to setting the Ca2+ threshold for enzyme activation and increases the importance of a partially Ca2+-saturated calmodulin-target complex that can act as a regulatory kinetic and equilibrium intermediate in Ca2+-dependent target interactions.  相似文献   

10.
Ligand-induced dimer formation of calmodulin   总被引:1,自引:0,他引:1  
Calmodulin (CaM) can bind to numerous proteins in several interaction modes. Recently a new mode of interaction was discovered, in which two CaM molecules form an X-shaped dimer and two binding sites to trap the CaM-binding domain (CBD) of calcineurin subunit A. However, the X-shaped CaM dimer alone without ligand has not been observed. We performed molecular dynamics (MD) simulations and used MM_PBSA approach to investigate the properties of this new binding mode using ligand-bound and -free dimer systems. MD trajectories show that two peptides of CBD play a critical role in stabilizing the X-shaped conformation of the CaM dimer which would otherwise be unstable, leading to dimer disassembly in the absence of the ligands. Furthermore, we have analyzed the interaction free energy of the complex by MM-PBSA method and provide further evidence to demonstrate that the CBD peptide ligands are responsible for the stabilization of the dimer. Comparing this new binding mode with the classical one represented by CaM in complex with smooth muscle myosin light chain kinase, we conclude that this new binding mode is induced by the CBD of calcineurin subunit A. Our results explain the fact that the X-shaped CaM dimer structure has never been observed in the absence of ligands.  相似文献   

11.
12.
In order to determine the structure of the 15 kDa cyclic nucleotide binding domain of a cyclic nucleotide-activated K+ channel from Mesorhizobium loti and its interaction with cAMP, nearly complete 1H, 13C, and 15N chemical shifts were assigned.  相似文献   

13.
CaMBP-10的cDNA克隆和表达及钙调素结合活性分析   总被引:4,自引:0,他引:4  
采用RT PCR法 ,从中国大白菜中分离了编码CaMBP 1 0的cDNA克隆 .该cDNA全长 4 96bp ,编码 92个氨基酸 ,3′端含有 2 1 6bp的非编码区和poly A尾 .将此BP 1 0cDNA的成熟蛋白序列导入表达质粒pET1 5b并转化至大肠杆菌E .coliBL2 1 (DE3)condonplus RIL进行表达 .以免疫印迹和钙调素结合分析法对重组BP 1 0进行鉴定 ,证明其保持了与天然BP 1 0相同的钙调素结合活性 .氨基酸和核苷酸序列分析结果显示 ,它与植物转脂蛋白高度同源 ,特别是含有 8个保守半胱氨酸 .BP 1 0与转脂蛋白之间具极为相似的理化性质如分子量、等电点、热稳定性等 .据此认为 ,CaMBP 1 0是转脂蛋白家族的新成员 ,Ca2 + CaM信号系统可能参与植物转脂蛋白功能的调节  相似文献   

14.
Zhou Q  Xiao YB  Liu J  Wang PY  Chen L  Zhong QJ  Wang XF 《生理学报》2005,57(6):731-736
为探讨心肌细胞核钙调素Ⅰ(calmodulinⅠ,CaMⅠ)介导的bcl-2转录调节存人鼠心肌肥脬中的作用及其可能机制,实验随机分为对照组和心肌肥厚组,采用腹卡动脉缩窄法制备人鼠心肌肥厚模犁。模型复制成功后4周,以改良差速离心和密度梯度离心提取并纯化细胞核;蛋白印迹法测定心肌细胞核cAMP反应元件结合蛋白(cAMP response-element binding protein,CREB)及磷酸化CREB(phosphorylated cAMP response-element binding protein,pCREB)表达;免瘦组化法观察左审心肌组织CaMI蛋白表达及分布;延续转录分析法观察阻断CaMⅠ后心肌细胞核bcl-2 mRNA的变化。结果表明,心肌肥厚组pCREB蛋白表达较对照组明显增加(P〈0.05),CREB蛋门表达无明显变化(P〉0.05);CaMⅠ分布于细胞核及细胞浆,心肌肥厚组CaMⅠ蛋白表达较对照组明显增加(P〈0.05);使用CaM抑制刺后心肌细胞核bcl-2 mRNA表达明显上调(P〈0.05)。结果提示,压力超负荷时心肌细胞核内CaMⅠ激活,抗凋亡基因bcl-2表达下调,核转录因子CREB磷酸化增加,但CREB在调节bcl-2基因转录过程中可能发挥次要作用。  相似文献   

15.
为探讨心肌细胞核钙调素I(calmodulin I,CaM I)介导的bcl-2转录调节在大鼠心肌肥厚中的作用及其可能机制, 实验随机分为对照组和心肌肥厚组,采用腹主动脉缩窄法制备大鼠心肌肥厚模型。模型复制成功后4周,以改良差速离心和密度梯度离心提取并纯化细胞核;蛋白印迹法测定心肌细胞核cAMP反应元件结合蛋白(cAMP response-element binding protein,CREB)及磷酸化CREB(phosphorylated cAMP response-element binding protein,pCREB)表达;免疫组化法观察左室心肌组织CaM I蛋白表达及分布;延续转录分析法观察阻断CaM I后心肌细胞核bcl-2 mRNA的变化。结果表明,心肌肥厚组pCREB蛋白表达较对照组明显增加(P<0.05),CREB蛋白表达无明显变化(P>0.05);CaM I分布于细胞核及细胞浆,心肌肥厚组CaM I蛋白表达较对照组明显增加(P<0.05);使用CaM抑制剂后心肌细胞核bcl-2 mRNA表达明显上调(P<0.05)。结果提示,压力超负荷时心肌细胞核内CaM I激活,抗凋亡基因bcl-2表达下调,核转录因子CREB磷酸化增加,但CREB 在调节bcl-2基因转录过程中可能发挥次要作用。  相似文献   

16.
Olfactory receptor neurons (ORNs) employ a cyclic nucleotide-gated (CNG) channel to generate a receptor current in response to an odorant-induced rise in cAMP. This channel contains three types of subunits, the principal CNGA2 subunit and two modulatory subunits (CNGA4 and CNGB1b). Here, we have analyzed the functional relevance of CNGB1 for olfaction by gene targeting in mice. Electro-olfactogram responses of CNGB1-deficient (CNGB1-/-) mice displayed a reduced maximal amplitude and decelerated onset and recovery kinetics compared with wild-type mice. In a behavioral test, CNGB1-/- mice exhibited a profoundly decreased olfactory performance. Electrophysiological recordings revealed that ORNs of CNGB1-/- mice weakly expressed a CNG current with decreased cAMP sensitivity, very rapid flicker-gating behavior and no fast modulation by Ca2+-calmodulin. Co-immunoprecipitation confirmed the presence of a CNGA2/CNGA4 channel in the olfactory epithelium of CNGB1-/- mice. This CNGA2/CNGA4 channel was targeted to the plasma membrane of olfactory knobs, but failed to be trafficked into olfactory cilia. Interestingly, we observed a similar trafficking defect in mice deficient for the CNGA4 subunit. In conclusion, these results demonstrate that CNGB1 has a dual function in vivo. First, it endows the olfactory CNG channel with a variety of biophysical properties tailored to the specific requirements of olfactory transduction. Second, together with the CNGA4 subunit, CNGB1 is needed for ciliary targeting of the olfactory CNG channel.  相似文献   

17.
Elevations of the intracellular levels of cyclic nucleotides appear to cause the cation influx through gustatory cyclic nucleotide-gated (CNGgust) channels expressed in taste cells. Although changes in the oral pH may directly regulate the activity of the CNGgust channel, the mechanism of pH-dependent control of the channel is not understood. In the present study, we combined the whole-cell patch-clamp recording and the site-directed mutagenesis to investigate the effect of extracellular pH on the ion permeation through CNGgust channels expressed in HEK293 cells. Extracellular acidification strongly inhibited ion permeation through open CNGgust channels. Mutation of Glu(289) remarkably attenuated the pH-dependence of the channel, suggesting that Glu(289) in the pore-forming region is a major proton acceptor site. However, the mutant E289A-CNGgust channel possesses the other residual protonation/deprotonation site. The channel activity, tightly regulated by pH(o) and [cNMP](i), suggests the involvement of its pH(o)-dependent ion permeation in taste signal transduction events.  相似文献   

18.
Calmodulin is a member of the "EF-hand" family of Ca(2+)-binding proteins. It consists of two homologous globular domains, each containing two helix-loop-helix Ca(2+)-binding sites. To examine the contribution of individual Ca(2+)-binding sites to the Ca(2+)-binding properties of CaM, a series of four site-directed mutants has been studied. In each, the glutamic acid at position 12 in one of the four Ca(2+)-binding loops has been changed to a glutamine. One-dimensional 1H-NMR has been used to monitor Ca(2+)-induced changes in the mutant proteins, and the spectral changes observed for each mutant have been compared to those for wild-type CaM. In this way, the effect of each mutation on both the mutated site and the other Ca(2+)-binding sites has been examined. The mutation of glutamate to glutamine at position 12 in any of the EF-hand Ca(2+)-binding loops greatly decreases the Ca(2+)-binding affinity at that site, yet differs in the overall effects on Ca2+ binding depending on which of the four sites is mutated. When the mutation is in site I, there is only a small decrease in the apparent Ca(2+)-binding affinity of site II, and vice versa. Mutation in either site III or IV results in a large decrease in the apparent Ca(2+)-binding affinities of the partner C-terminal site. In both the N- and C-terminal domains, evidence for altered conformational effects in the partners of mutated sites is presented. In the C-terminus, the conformational consequences of mutating site III or site IV are strikingly different.  相似文献   

19.
Summary Lens fibers are coupled by communicating junctions, clusters of cell-to-cell channels composed of a 28-kD intrinsic membrane protein (MIP26). Evidence suggests that these and other cell-to-cell channels may close as a result of protein conformational change induced by activated calmodulin. To test the validity of this hypothesis, we have measured the intrinsic fluorescence emission and far-ultraviolet circular dichroism of the isolated components MIP26, calmodulin, and the MIP26-calmodulin complex, both in the absence and presence of Ca++, an uncoupling agent. MIP26 shows no change in either, fluorescence emission (primarily tryptophan and a measure of aromatic constitutivity) or in its circular dichroism spectrum. Calmodulin exhibits a 32% increase in fluorescence emission intensity with constant emission wavelength, entirely tyrosine, and a 44% increase in -helicity, changes previously described. The MIP26-calmodulin complex, on the other hand, displays fluorescence emission and circular dichroism spectra which are slightly different from the sum of the two single components, but shows marked differences in both spectra upon Ca++ addition. This indicates a change in conformation in one or both of the two components. Spectral changes include a 5-nm blue-shift, a 50% increase in tyrosine fluorescene emission, a 25% decrease in tryptophan fluorescence emission, and a 5% increase in the -helicity of the complex. These changes also occur about an isosbestic point and are fully reversible. These data provide additional evidence that activated calmodulin may modulate gating of cell-to-cell channels by affecting channel protein.  相似文献   

20.
Due to Ca2+‐dependent binding and the sequence diversity of Calmodulin (CaM) binding proteins, identifying CaM interactions and binding sites in the wet‐lab is tedious and costly. Therefore, computational methods for this purpose are crucial to the design of such wet‐lab experiments. We present an algorithm suite called CaMELS (CalModulin intEraction Learning System) for predicting proteins that interact with CaM as well as their binding sites using sequence information alone. CaMELS offers state of the art accuracy for both CaM interaction and binding site prediction and can aid biologists in studying CaM binding proteins. For CaM interaction prediction, CaMELS uses protein sequence features coupled with a large‐margin classifier. CaMELS models the binding site prediction problem using multiple instance machine learning with a custom optimization algorithm which allows more effective learning over imprecisely annotated CaM‐binding sites during training. CaMELS has been extensively benchmarked using a variety of data sets, mutagenic studies, proteome‐wide Gene Ontology enrichment analyses and protein structures. Our experiments indicate that CaMELS outperforms simple motif‐based search and other existing methods for interaction and binding site prediction. We have also found that the whole sequence of a protein, rather than just its binding site, is important for predicting its interaction with CaM. Using the machine learning model in CaMELS, we have identified important features of protein sequences for CaM interaction prediction as well as characteristic amino acid sub‐sequences and their relative position for identifying CaM binding sites. Python code for training and evaluating CaMELS together with a webserver implementation is available at the URL: http://faculty.pieas.edu.pk/fayyaz/software.html#camels .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号