首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Kalanchoë daigremontiana, a CAM plant grown in a greenhouse, was subjected to severe water stress. The changes in photosystem II (PSII) photochemistry were investigated in water‐stressed leaves. To separate water stress effects from photoinhibition, water stress was imposed at low irradiance (daily peak PFD 150 μmol m?2 s?1). There were no significant changes in the maximal efficiency of PSII photochemistry (Fv/Fm), the traditional fluorescence induction kinetics (OIP) and the polyphasic fluorescence induction kinetics (OJIP), suggesting that water stress had no direct effects on the primary PSII photochemistry in dark‐adapted leaves. However, PSII photochemistry in light‐adapted leaves was modified in water‐stressed plants. This was shown by the decrease in the actual PSII efficiency (ΦPSII), the efficiency of excitation energy capture by open PSII centres (Fv′/Fm′), and photochemical quenching (qP), as well as a significant increase in non‐photochemical quenching (NPQ) in particular at high PFDs. In addition, photoinhibition and the xanthophyll cycle were investigated in water‐stressed leaves when exposed to 50% full sunlight and full sunlight. At midday, water stress induced a substantial decrease in Fv/Fm which was reversible. Such a decrease was greater at higher irradiance. Similar results were observed in ΦPSII, qP, and Fv′/Fm′. On the other hand, water stress induced a significant increase in NPQ and the level of zeaxanthin via the de‐epoxidation of violaxanthin and their increases were greater at higher irradiance. The results suggest that water stress led to increased susceptibility to photoinhibition which was attributed to a photoprotective process but not to a photodamage process. Such a photoprotection was associated with the enhanced formation of zeaxanthin via de‐epoxidation of violaxanthin. The results also suggest that thermal dissipation of excess energy associated with the xanthophyll cycle may be an important adaptive mechanism to help protect the photosynthetic apparatus from photoinhibitory damage for CAM plants normally growing in arid and semi‐arid areas where they are subjected to a combination of water stress and high light.  相似文献   

2.
Growth rate, pigment composition, and noninvasive chl a fluorescence parameters were assessed for a noncalcifying strain of the prymnesiophyte Emiliania huxleyi Lohman grown at 50, 100, 200, and 800 μmol photons·m?2·s?1. Emiliania huxleyi grown at high photon flux density (PFD) was characterized by increased specific growth rates, 0.82 d?1 for high PFD grown cells compared with 0.38 d?1 for low PFD grown cells, and higher in vivo chl a specific attenuation coefficients that were most likely due to a decreased pigment package, consistent with the observed decrease in cellular photosynthetic pigment content. High PFD growth conditions also induced a 2.5‐fold increase in the pool of the xanthophyll cycle pigments diadinoxanthin and diatoxanthin responsible for dissipation of excess energy. Dark‐adapted maximal photochemical efficiency (Fv/Fm) remained constant at around 0.58 for cells grown over the range of PFDs, and therefore the observed decline, from 0.57 to 0.33, in the PSII maximum efficiency in the light‐adapted state, (Fv′/Fm′), with increasing growth PFD was due to increased dissipation of excess energy, most likely via the xanthophyll cycle and not due to photoinhibition. The PSII operating efficiency (Fq′/Fm′) decreased from 0.48 to 0.21 with increasing growth PFD due to both saturation of photochemistry and an increase in nonphotochemical quenching. The changes in the physiological parameters with growth PFD enable E. huxleyi to maximize rates of photosynthesis under subsaturating conditions and protect the photosynthetic apparatus from excess energy while supporting higher saturating rates of photosynthesis under saturating PFDs.  相似文献   

3.
Effects of exogenous glycinebetaine (GB, 2–50 mM) on growth, photosynthetic gas exchange, PSII photochemistry, and the activities of key enzymes involved in CO2 fixation in maize plants were investigated. Growth, CO2 assimilation rate, and stomatal conductance increased at low GB concentrations (2–20 mM) but decreased significantly at high GB concentrations (30–50 mM). Leaf relative water content and water potential remained unchanged at low GB concentrations but decreased at high GB concentrations. The maximal efficiency of PSII photochemistry was unchanged either at low or high GB concentrations. The actual PSII efficiency ( Φ PSII) and photochemical quenching (qP) increased at low GB concentrations but decreased at high GB concentrations. At low GB concentrations, there were no significant changes in the efficiency of excitation energy capture by open PSII reaction centres (Fv′/Fm′) and non‐photochemical quenching (qN). At high GB concentrations, Fv′/Fm′ decreased while qN increased significantly. There were no changes in the activities of phosphoenolpyruvate carboxylase, pyruvate phosphate dikinase, and ribulose‐1,5‐bisphosphate carboxylase in control and GB‐fed plants. However, there was a linear correlation between CO2 assimilation rate and stomatal conductance in control and GB‐fed plants. Moreover, there were no significant differences in O2 evolution rate between control and GB fed‐plants under saturated CO2 conditions. The results suggest that exogenous GB application at certain concentrations can enhance CO2 assimilation rate, which can be explained by an increased stomatal conductance.  相似文献   

4.
The PSII photochemical activity in a terrestrial cyanobacterium Nostoc commune Vaucher ex Bornet et Flahault during rewetting was undetectable in the dark but was immediately recognized in the light. The maximum quantum yield of PSII (Fv/Fm) during rewetting in the light rose to 85% of the maximum within ~30 min and slowly reached the maximum within 6 h, while with rewetting in the darkness for 6 h and then exposure to light the recovery of Fv/Fm required only ~3 min. These results suggested that recovery of photochemical activity might depend on two processes, light dependence and light independence, and the activation of photosynthetic recovery in the initial phase was severely light dependent. The inhibitor experiments showed that the recovery of Fv/Fm was not affected by chloramphenicol (CMP), but severely inhibited by 3‐(3,4‐dichlorophenyl)‐1,1‐dimethylurea (DCMU) in the light, suggesting that the light‐dependent recovery of photochemical activity did not require de novo protein synthesis but required activation of PSII associated with electron flow to plastoquinone. Furthermore, the test indicated that the lower light intensity and the red light were of benefit to its activation of photochemical activity. In an outdoor experiment of diurnal changes of photochemical activity, our results showed that PSII photochemical activity was sensitive to light fluctuation, and the nonphotochemical quenching (NPQ) was rapidly enhanced at noon. Furthermore, the test suggested that the repair of PSII by de novo protein synthesis played an important role in the acclimation of photosynthetic apparatus to high light, and the heavily cloudy day was more beneficial for maintaining high photochemical activity.  相似文献   

5.
Trehalose was supplied to wheat (Triticum aestivum L.) seedlings just before a high temperature (40 °C) treatment and some physiological parameters were measured during the heat stress and recovery. The application of trehalose decreased the net photosynthetic rate (PN) of wheat seedlings under the heat stress, but to a small extent increased the dry mass (DM) and leaf water content (LWC) after recovery from the heat stress. The trehalose-induced decrease in PN under the heat stress was not associated with a stomatal response. The heat stress slightly decreased the maximal efficiency of photosystem II (PS II) photochemistry (the variable to maximum chlorophyll a fluorescence ratio, Fv/Fm) similarly in the trehalose treated or non-treated plants. Under the heat stress, the actual efficiency of PS II photochemistry (ΦPSII) and the efficiency of excitation energy capture by open reaction centers (Fv′/Fm′) were lower in the trehalose-pretreated seedlings, whereas they were higher after the recovery. The patterns of changes in nonphotochemical quenching (NPQ) were contrary to those of ?PS II and Fv′/Fm′. The chlorophyll content was lower, whereas the β-carotene content and the degree of de-epoxidation (DEPS) of xanthophyll cycle pigments were higher in the trehalose-pretreated wheat seedlings under the heat stress. These results suggest that exogenous trehalose partially promotes recovery of wheat by the increase of NPQ, β-carotene content, and DEPS.  相似文献   

6.
CO2 assimilation, xanthophyll cycle pigments and PSII efficiency were analyzed in two different ages of pumpkin leaves (Cucurbita pepo L. cv. Ambassador) exposed to 150 nmol mol-1 of ozone (5 days, 5 h day-1). Gas-exchange measurements revealed a reduction in CO2 assimilation and stomatal conductance, accompanied by an increase in the intercellular CO2 concentration both in young and in mature leaves as compared to their respective controls. In both leaves, F0 remained unchanged, while Fm and the Fv/Fm ratio decreased after O3 fumigation, indicating that ozone may induce an alteration in the capability of photosystem II (PSII) to reduce the primary acceptor QA. In the mature leaves the photochemical quenching (qp) was significantly lowered by the pollutant, but this was not the case in the young leaves where qp did not change. In both mature and young ozonated pumpkin leaves, the development of non-photochemical quenching caused a decrease in the PSII photochemical rate, as shown by the correlation between Fv/Fm and the de-epoxidation state of dark-adapted leaves. Decreases in the Fv/Fm ratio are generally attributed to damage to the PSII reaction centre, apart from the down-regulation of the capacity of PSII electron transport. While in young ozonated leaves the decrease in the Fv/Fm ratio was not associated with damage to the D1 protein, in mature ozonated pumpkin leaves, the decrease in the Fv/Fm was accompanied by a significant decline in the D1 content. In conclusion, ozone exposure induces alterations in the light reactions of photosynthesis in both young and mature leaves. However, in young leaves the engagement of the xanthophyll cycle appears to counteract ozone effects against the photosynthetic apparatus as demonstrated by the absence of damage to the D1 protein. On the other hand, the loss of D1 protein in mature fumigated leaves suggests that the activation of the xanthophyll cycle is not sufficient to prevent photoinhibition, probably because a physiological state of senescence adds to the oxidative stress.  相似文献   

7.
Diurnal variation of gas exchange, chlorophyll (Chl) fluorescence, and xanthophyll cycle components of three maize (Zea mays L.) hybrids released in different years, i.e. Baimaya (1950s), Zhongdan2 (1970s), and Nongda108 (1990s), were compared. On cloudless days, the newer hybrids always had higher net photosynthetic rate (P N), especially at noon, than the older ones. At noon, all the hybrids decreased their maximal yield of photosystem 2 (PS2) photochemistry (Fv/Fm) and actual quantum yield of PS2 (ΦPS2), the newer ones always showing higher values. Generally, the newer hybrids displayed higher photochemical quenching of Chl (qP) and lower non-photochemical quenching (NPQ). The interhybrid differences in P N may be owing to their differential photochemical efficiency. A midday depression in P N occurred in all hybrids, which might be caused by serious photoinhibition or by decreased stomatal conductance. However, midday depression in P N was more obvious in the older hybrids, especially when leaves were senescent. The higher de-epoxidation state of the xanthophylls was noted in older hybrids, which was confirmed by their larger NPQ. The newer maize hybrids did not need a strong de-epoxidation state since they had a better photosynthetic quantum conversion rate and a lower NPQ.  相似文献   

8.
Experimental investigations of ozone (O3) effects on plants have commonly used short, acute [O3] exposure (>100 ppb, on the order of hours), while in field crops damage is more likely caused by chronic exposure (<100 ppb, on the order of weeks). How different are the O3 effects induced by these two fumigation regimes? The leaf‐level photosynthetic response of soybean to acute [O3] (400 ppb, 6 h) and chronic [O3] (90 ppb, 8 h d?1, 28 d) was contrasted via simultaneous in vivo measurements of chlorophyll a fluorescence imaging (CFI) and gas exchange. Both exposure regimes lowered leaf photosynthetic CO2 uptake about 40% and photosystem II (PSII) efficiency (Fq′/Fm′) by 20% compared with controls, but this decrease was far more spatially heterogeneous in the acute treatment. Decline in Fq′/Fm′ in the acute treatment resulted equally from decreases in the maximum efficiency of PSII (Fv′/Fm′) and the proportion of open PSII centres (Fq′/Fv′), but in the chronic treatment decline in Fq′/Fm′ resulted only from decrease in Fq′/Fv′. Findings suggest that acute and chronic [O3] exposures do not induce identical mechanisms of O3 damage within the leaf, and using one fumigation method alone is not sufficient for understanding the full range of mechanisms of O3 damage to photosynthetic production in the field.  相似文献   

9.
In this study, the gas exchange, chlorophyll fluorescence, and antioxidant activity in eight tall fescue cultivars were investigated under aluminum stress. The results showed that the net photosynthetic rate (P N) and stomatal conductance (g s) were decreased, while the intercellular CO2 concentration (Ci) was stable or increased under Al stress conditions. The efficiency of excitation capture by open PSII reaction centers (Fv/Fm), the maximum quantum yield of PSII photochemistry (F v/F m), the quantum yield of PSII electron transport (ΦPSII), and the photochemical quenching (qP) were also decreased after Al stress, while the non-photochemical quenching (NPQ) was increased. Moreover, Al stress increased the antioxidant activities and MDA contents in each tall fescue cultivars. However, there was a lot genotype differences between the Al-tolerant and Al-sensitive cultivars. Cv. Barrington was the most sensitive cultivar and cv. Crossfire 2 was the most tolerant cultivar. The excessive excitation energy could not be dissipated efficiently by antenna pigments, and reactive oxygen species could not be scavenged efficiently, thereby resulting in membrane lipid peroxidation in cv. Barrington under Al stress conditions.  相似文献   

10.
Soil water and salinity conditions of the riparian zones along the Tarim River, northwest China, have been undergoing alterations due to water use by human or climate change, which is expected to influence the riparian forest dominated by an old poplar, Populus euphratica. To evaluate the effects of such habitat alterations, we examined photosynthetic and growth performances of P. euphratica seedlings across experimental soil water and salinity gradients. Results indicated that seedlings were limited in their physiological performance, as evidenced by decreases in their height and biomass, and the maximal quantum yield of photosystem II (PSII) photochemistry (Fv/Fm), the effective quantum-use efficiency of PSII (Fv′/Fm′), and photochemical quenching (qP) under mild (18% soil water content, SWC; 18.3 g kg?1 soil salt content, SSC) and moderate (13% SWC, 22.5 g kg?1 SSC) water or salinity stress. However, seedlings had higher root/shoot ratio (R/S), increased nonphotochemical quenching (NPQ), and water-use efficiency (WUE) relative to control under such conditions. Under severe (8% SWC, 27.9 g kg?1 SSC) water or salinity stress, P. euphratica seedlings had only a fifth of biomass of those under control conditions. It was also associated with damaged PSII and decreases in WUE, the maximal net photosynthetic rate (P Nmax), light-saturation point (LSP), and apparent quantum yield (α). Our results suggested that the soil conditions, where P.euphratica seedlings could grow normally, were higher than ~ 13% for SWC, and lower than ~22.5 g kg?1 for SSC, the values, within the seedlings could acclimate to water or salinity stress by adjusting their R/S ratio, improving WUE to limit water loss, and rising NPQ to dissipate excessive excitation energy. Once SWC was lower than 8% or SCC higher than ~28 g kg?1, the seedlings suffered from the severe stress.  相似文献   

11.
The influence of long‐term drought stress on photosynthesis of Japanese mountain birch (Betula ermanii Cham.) was examined using chlorophyll fluorescence and gas exchange measurements. Drought stress was imposed in potted plants by reducing irrigation frequency from daily (control) to twice‐weekly and once‐weekly. Thirty‐day‐old leaves, which had developed under fully stressed conditions, were used for the measurements. The decline in net CO2 assimilation rate (A) observed in situ in drought‐stressed plants resulted from a lower intercellular CO2 concentration (Ci) due to stomatal closure but the carboxylation efficiency was not affected as there was no difference in the initial slope of the A/Ci response after watering. Although there were no treatment differences in A at Ci below 270 μmol mol?1 (with ambient air at 360 μmol mol?1 CO2), higher electron transport rate (ETR), photochemical quenching (qP) and the efficiency of energy conversion of open PSII (Fv′/Fm′), and similar or even lower non‐photochemical quenching (NPQ) were observed at a given Ci in drought‐stressed plants (of both twice‐ and once‐weekly irrigation), suggesting a higher fraction of open PSII resulting from energy dissipation achieved through higher electron flow rather than through thermal dissipation in PSII antennae. The once‐weekly watered plants showed a lower ratio of gross carbon assimilation rate to ETR (A*/ETR), suggesting an enhanced alternative pathway of electron flow probably involving the Mehler‐peroxidase (MP) reaction as indicated by a higher ΦPSII at a given ΦCO2 under non‐photorespiratory conditions. On the other hand, plants of twice‐weekly watering exhibited almost the same A*/ETR and ΦPSII–ΦCO2 relationship as control plants, indicating no enhanced alternative pathways under mild drought stress.  相似文献   

12.
The impact of moderate water deficit on the photosynthetic apparatus of three Phaseolus vulgaris L. cultivars, Plovdiv 10 (P10), Dobrudjanski Ran (DR) and Prelom (Prel), was investigated. Water shortage had less impact on leaf hydration, RWC (predawn and midday) and predawn water potential in Prel. RWC and Ψp were more reduced in P10, while there was no osmotic adjustment in any cultivar. Although drought drastically reduced stomatal opening in P10 and DR, reduced Amax indicated non‐stomatal limitations that contributed to the negligible Pn. These limitations were on potential thylakoid electron transport rates of PSI and II, pointing to photosystem functioning as a major limiting step in photosynthesis. This agrees with decreases in actual photochemical efficiency of PSII (Fv′/Fm′), quantum yield of photosynthetic non‐cyclic electron transport (?e) and energy‐driven photochemical events (qP), although the impact on these parameters would also include down‐regulation processes. When compared to DR, Prel retained a higher functional state of the photosynthetic machinery, justifying reduced need for photoprotective mechanisms (non‐photochemical quenching, zeaxanthin, lutein, β‐carotene) and maintenance of the balance between energy capture and dissipative pigments. The highest increases in fructose, glucose, arabinose and sorbitol in Prel might be related to tolerance to a lower oxidative state. All cultivars had reduced Amax due to daytime stomatal closure in well‐watered conditions. Under moderate drought, Prel had highest tolerance, higher leaf hydration and maintenance of important photochemical use of energy. However, water shortage caused appreciable non‐stomatal limitations to photosynthesis linked to regulation/imbalance at the metabolic level (and growth) in all cultivars. This included damage, as reflected in decreased potential photosystem functioning, pointing to higher sensitivity of photosynthesis to drought than is commonly assumed.  相似文献   

13.
Photosynthetic parameters were measured in two invasive weeds, Mikania micrantha and Chromolaena odorata, grown in soil under full, medium, and low irradiance and full, medium, and low water supply. Both species showed significantly higher net photosynthetic rate, quantum yield of PS 2 photochemistry and photochemical quenching coefficient under high than low irradiance. For M. micrantha, low irradiance caused decreased chlorophyll content (Chl), Chl a/b ratio and maximum photochemical efficiency of PS 2 (Fv/Fm), while drought decreased Chl content and Fv/Fm and increased nonphotochemical quenching (NPQ). However, these parameters were much less affected in C. odorata except that Chl content and NPQ slightly increased under drought and high irradiance. High irradiance increased xanthophyll pools in both species, especially M. micrantha under combination with drought.  相似文献   

14.
Physiological and photosynthetic responses were investigated at three different depths of groundwater (DGW: 1.4, 2.4, and 3.4 m) in Elaeagnus angustifolia L., a locally adapted tree to the arid region in northwest China. Predawn leaf water potential and chlorophyll content declined gradually with the increasing DGW, whereas there was little effect on predawn variable-to-maximum chlorophyll fluorescence ratio F v/F m and leaf carotenoid compositions (xanthophyll cycle pool, neoxanthin, lutein, and β-carotene). Net photosynthetic rate (P n), quantum yield of PSII electron transport (ΦPSII), stomatal conductance (Gs), and intercellular CO2 concentration (Ci) declined obviously; however, P n decreased more than ΦPSII at deeper DGW. The photoinhibition of PSII at all three DGW occurred at midday in summer and increased as DGW increased. The ΔpH-dependent thermal dissipation and the level of de-epoxidation of the xanthophyll cycle at all three DGW reached their maxima at midday with the increase of light intensity. However, the fraction of functional PSII and light intensity at deeper DGW (2.4, 3.4 m) showed a negative correlation. This correlation suggested that most of violaxanthin was converted into zeaxanthin at midday, and the reversible inactivation of partial PSII reaction centers took place at deeper DGW. These results together suggest that both the xanthophyll cycle-dependent thermal dissipation and the reversible inactivation of partial PSII might have played important roles in avoiding the excess light-induced energy damage in leaves of this tree species at deeper DGW.  相似文献   

15.
This study examined the ability of the photochemical reflectance index (PRI) to track changes in effective quantum yield (Δ F/F m ′), non-photochemical quenching (NPQ), and the xanthophyll cycle de-epoxidation (DPS) in an experimental mangrove canopy. PRI was correlated with (Δ F/F m ′) and NPQ over the 4-week measurement period and over the diurnal cycle. The normalised difference vegetation index (NDVI) was not correlated with any aspect of photochemical efficiency measured using chlorophyll fluorescence or xanthophyll pigments. This study demonstrated that photochemical adjustments were responsible for controlling the flow of energy through the photosynthetic apparatus in this mangrove forest canopy rather than canopy structural or chlorophyll adjustments.  相似文献   

16.
Over-expression of chloroplastic glycerol-3-phosphate acyltransferase gene (LeGPAT) increased unsaturated fatty acid contents in phosphatidylglycerol (PG) of thylakoid membrane in tomato. The effect of this increase on the xanthophyll cycle and chloroplast antioxidant enzymes was examined by comparing wild type (WT) tomato with the transgenic (TG) lines at chilling temperature (4 °C) under low irradiance (100 μmol m−2 s−1). Net photosynthetic rate and the maximal photochemical efficiency of photosystem (PS) 2 (Fv/Fm) in TG plants decreased more slowly during chilling stress and Fv/Fm recovered faster than that in WT plants under optimal conditions. The oxidizable P700 in both WT and TG plants decreased during chilling stress under low irradiance, but recovered faster in TG plants than in the WT ones. During chilling stress, non-photochemical quenching (NPQ) and the de-epoxidized ratio of xanthophyll cycle in WT plants were lower than those of TG tomatoes. The higher activities of superoxide dismutase (SOD) and ascorbate peroxidase (APX) in TG plants resulted in the reduction of O2 −· and H2O2 contents during chilling stress. Hence the increase in content of unsaturated fatty acids in PG by the over-expression of LeGPAT could alleviate photoinhibition of PS2 and PS1 by improving the de-epoxidized ratio of xanthophyll cycle and activities of SOD and APX in chloroplast.  相似文献   

17.
Photosystem II (PS II) efficiency, nonphotochemical fluorescence quenching, and xanthophyll cycle composition were determined in situ in the natural environment at midday in (i) a range of differently angled sun leaves ofEuonymus kiautschovicus Loesener and (ii) in sun leaves of a wide range of different plant species, including trees, shrubs, and herbs. Very different degrees of light stress were experienced by these leaves (i) in response to different levels of incident photon flux densities at similar photosynthetic capacities amongEuonymus leaves and (ii) as a result of very different photosynthetic capacities among species at similar incident photon flux densities (that were equivalent to full sunlight). ForEuonymus as well as the interspecific comparison all data fell on one single, close relationship for changes in intrinsic PSII efficiency, nonphotochemical fluorescence quenching, or the levels of zeaxanthin + antheraxanthin in leaves, respectively, as a function of the actual level of light stress. Thus, the same conversion state of the xanthophyll cycle and the same level of energy dissipation were observed for a given degree of light stress independent of species or conditions causing the light stress. Since all increases in thermal energy dissipation were associated with increases in the levels of zeaxanthin + antheraxanthin in these leaves, there was thus no indication of any form of xanthophyll cycle-independent energy dissipation in any of the twenty-four species or varieties of plants examined in their natural environment. It is also concluded that transient diurnal changes in intrinsic PSII efficiency in nature are caused by changes in the efficiency with which excitation energy is delivered from the antennae to PSII centers, and are thus likely to be purely photoprotective. Consequently, the possibility of quantifying the allocation of absorbed light into PSII photochemistry versus energy dissipation in the antennae from changes in intrinsic PSII efficiency is explored.Abbreviations A antheraxanthin - F actual level of fluorescence - Fa, F o minimal fluorescence in the absence, presence of thylakoid energization - Fm, F m maximal fluorescence in the absence, presence of thylakoid energization - Fm, - F)/F m actual PSII efficiency ( = percent of absorbed light utilized in PSII photochemistry) - Fv/Fm, F v /Fm/ PSII efficiency of open centers in the absence, presence of thylakoid energization - NPQ nonphotochemical fluorescence quenching - Fm/F m - 1; qp quenching coefficient for photochemical quenching - V violaxanthin - Z zeaxanthin  相似文献   

18.
Midday photoinhibition of two newly developed super-rice hybrids   总被引:1,自引:0,他引:1  
Super-rice hybrids are two-line hybrid rice cultivars with 15 to 20 % higher yields than the raditional three-line hybrid rice cultivars. Response of photosynthetic functions to midday photoinhibition was compared between seedlings of the traditional hybrid rice (Oryza sativa L.) Shanyou63 and two super-rice hybrids, Hua-an3 and Liangyoupeijiu. Under strong midday sunlight, in comparison with Shanyou63, the two super-rice hybrids were less photoinhibited, as indicated by the lower loss of the net photosynthetic rate (P N), the quantum yield of photosystem 2 (ΦPS2), and the maximum and effective quantum yield of PS2 photochemistry (Fv/Fm and Fv′/Fm′). They also had a much higher transpiration rate. Hence the super-rice hybrids could protect themselves against midday photoinhibition at the cost of water. The photoprotective de-epoxidized xanthophyll cycle components, antheraxanthin (A) and zeaxanthin (Z), were accumulated more in Hua-an3 and Liangyoupeijiu than in Shanyou63, but the size of xanthophyll cycle pool of the seedlings was not affected by midday photoinhibition. Compared to Shanyou63, the super-rice hybrids were better photoprotected under natural high irradiance stress and the accumulation of Z and A, not the size of the xanthophyll pool protected the rice hybrids against photoinhibition.  相似文献   

19.
The potential involvement of the xanthophyll cycle in photoprotection of overwintering evergreen plants was investigated. Leaves from five evergreen species. Pseudotsuga menziesii, Pinus panderosa, Euonyums kiautschovicus. Mahonia repens and Malva neglecta, were collected from the field predawn during winter and transferred to the laboratory where chlorophyll fluorescence emission as well as the chlorophyll and carotenoid composition were ascertained periodically for 4.5 days. Leaves and needles from all species were found to have retained large amounts of the xanthophyll cycle pigments zeaxanthin and antheraxanthin, and they exhibited sustained low values of the intrinsic efficiency of photosystem II (PSII; measured as the ratio of variable to maximal fluorescence, Fv/Fm) upon collection. The increase in PSII efficiency was biphasic, with a rapid phase (requiring several hours) and a slow phase (requiring several days). Changes in the conversion state of the xanthophyll cycle were found to correlate with increases in PSII efficiency in both phases, with the latter phase involving large increases in both Fm (maximal fluorescence) and Fo (minimal fluorescence) throughout the period of recovery. The relationship between Fm quenching (expressed as nonphotochemical or Stern-Volmer quenching [NPQ] of Fm, i.e. Fm/ Fm–1) and Fo quenching (Fo/Fo–1) was linear, as expected for changes in xanthophyll cycle-dependent energy dissipation in the antenna complexes. Furthermore, the relationship between Fv/Fm and NPQ during recovery followed the theoretical relationship predicted for changes in the rate constant for energy dissipation in the antenna complexes. This fit between the theoretical relationship and the actual data indicates that all changes in NPQ or Fv/Fm can be accounted for by changes in this rate constant. The results suggest a role for the photoprotective xanthophyll cycle-dependent dissipation process in the lowered efficiency of PSII observed in coldstressed evergreen plants in the field.  相似文献   

20.
The chlorophyll fluorescence parameter Fv/Fm reflects the maximum quantum efficiency of photosystem II (PSII) photochemistry and has been widely used for early stress detection in plants. Previously, we have used a three‐tiered approach of phenotyping by Fv/Fm to identify naturally existing genetic variation for tolerance to severe heat stress (3 days at 40°C in controlled conditions) in wheat (Triticum aestivum L.). Here we investigated the performance of the previously selected cultivars (high and low group based on Fv/Fm value) in terms of growth and photosynthetic traits under moderate heat stress (1 week at 36/30°C day/night temperature in greenhouse) closer to natural heat waves in North‐Western Europe. Dry matter accumulation after 7 days of heat stress was positively correlated to Fv/Fm. The high Fv/Fm group maintained significantly higher total chlorophyll and net photosynthetic rate (PN) than the low group, accompanied by higher stomatal conductance (gs), transpiration rate (E) and evaporative cooling of the leaf (ΔT). The difference in PN between the groups was not caused by differences in PSII capacity or gs as the variation in Fv/Fm and intracellular CO2 (Ci) was non‐significant under the given heat stress. This study validated that our three‐tiered approach of phenotyping by Fv/Fm performed under increasing severity of heat was successful in identifying wheat cultivars differing in photosynthesis under moderate and agronomically more relevant heat stress. The identified cultivars may serve as a valuable resource for further studies to understand the physiological mechanisms underlying the genetic variability in heat sensitivity of photosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号