首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An essential event in developmental processes is the introduction of asymmetry into an otherwise undifferentiated cell population. Cell division in Caulobacter is asymmetric; the progeny cells are structurally different and follow different sequences of development, thus providing a useful model system for the study of differentiation. Because the progeny cells are different from one another, there must be a segregation of morphogenetic and informational components at some time in the cell cycle. We have examined the pattern of specific protein segregation between Caulobacter stalked and swarmer daughter cells, with the rationale that such a progeny analysis would identify both structurally and developmentally important proteins. To complement the study, we have also examined the pattern of protein synthesis during synchronous growth and in various cellular fractions. We show here, for the first time, that the association of proteins with a specific cell type may result not only from their periodicity of synthesis, but also from their pattern of distribution at the time of cell division. Several membrane-associated and soluble proteins are segregated asymmetrically between progeny stalked and swarmer cells. The data further show that a subclass of soluble proteins becomes associated with the membrane of the progeny stalked cells. Therefore, although the principal differentiated cell types possess different synthetic capabilities and characteristic proteins, the asymmetry between progeny stalked and swarmer cells is generated primarily by the preferential association of specific soluble proteins with the membrane of only one daughter cell. The majority of the proteins which exhibit this segregation behavior are synthesized during the entire cell cycle and exhibit relatively long, functional messenger RNA half-lives.  相似文献   

2.
Major proteins synthesized by Swiss 3T3 cells at different stages of the cell cycle have been analyzed using double isotope labeling and one-dimensional SDS-polyacrylamide slab gels. The synthesis of actin was previously shown to be markedly enhanced a few hours after quiescent cells initiated growth following addition of serum. In contrast, the synthesis of actin remained at a constant rate, similar to that in quiescent cells, relative to synthesis of other proteins during the entire cell cycle. We conclude that enhanced actin synthesis is a process specific for the G0 to S transit, and may serve as a marker event during this interval. In contrast, three other proteins (90,000, 57,000, and 33,000 daltons) were synthesized throughout the cell cycle at higher rates than in G0 cells, and thus, are markers characteristic of cells traversing the cell cycle. A transient increase, such as seen for actin synthesis, by cells emerging from quiescence, may represent a process that these cells must perform before they can enter the G1 portion of the cell cycle. A transient event such as this need not be a periodic event that occurs during each cycle.  相似文献   

3.
Increasing evidence suggests that the eukaryotic cell cycle is controlled at several checkpoints by different members of a novel class of protein kinase, the cyclin-dependent kinases. To phosphorylate their substrates, these enzymes bind to proteins of the cyclin family--proteins that are synthesized and degraded at specific points in each cell cycle. The most well known of these kinases is the 34 kDa product of the cdc2 gene in fission yeast, p34cdc2; however, several putative cyclin-dependent kinases have now been cloned or identified. Some of these closely resemble p34cdc2. Here we review these new proteins, their potential roles in the cell cycle and the cyclins with which they may interact.  相似文献   

4.
Cell division is a highly regulated process that has to be coordinated with cell specification and differentiation for proper development and growth of the plants. Cell cycle regulation is carried out by key proteins that control cell cycle entry, progression and exit. This regulation is controlled at different stages such as gene expression, posttranslational modification of proteins and specific proteolysis. The G1/S and the G2/M transitions are critical checkpoints of the cell cycle that are controlled, among others, by the activity of cyclin-dependent kinases (CDK). Different CDK activities, still to be fully identified, impinge on the retinoblastoma (RBR)/E2F/DP pathway as well as on the programmed proteolysis pathway. The specific degradation of proteins through the ubiquitin pathway in plants, highly controlled in time and space, is emerging as a powerful mechanism to regulate the levels and the activity of several proteins, including many cell cycle regulators.Key Words: cell cycle, endoreplication, E2F, DP, Ubiquitin, SCF, SKP2, lateral root, Arabidopsis  相似文献   

5.
Pulse-labelling with [35S]-methionine/cysteine of macroplasmodia of the myxomycete Physarum polycephalum at different time points of the cell cycle reveals that the majority of nuclear matrix proteins is synthesized and assembled into nuclear structures without a pronounced cell cycle periodicity. Bulk nuclear histones on one hand and nuclear matrix associated histones on the other hand assemble with a different cell cycle periodicity suggesting specific functions of nuclear matrix bound chromatin. Characterization of the nuclear matrix by immunoblotting and immunofluorescence techniques with several antisera against vertebrate lamins shows the existence of lamin-homologous proteins in Physarum.  相似文献   

6.
John A. Bryant 《Plant biosystems》2013,147(4-6):855-863
Abstract

The initiation of DNA replication is a key step in the cell division cycle and in DNA endoreduplication. Initiation of replication takes place at specific places in chromosomes known as replication origins. These are subject to temporal regulation within the cell cycle and may also be regulated as a function of plant development. In yeast, replication origins are recognised and bound by three different groups of proteins at different stages of the cell cycle. Of these, the MCM proteins are the most likely to be involved in activating the origins in order to facilitate initiation. MCM-like proteins also occur in plants, but have not been characterised in detail. Other proteins which bind to origins have been identified, as has a protein with a strong affinity for ds-ss junctions in DNA molecules.  相似文献   

7.
Cooper S 《IUBMB life》2012,64(1):10-17
The current model of the eukaryotic cell cycle proposes that numerous genes are expressed at different times during the cell cycle. The existence of myriad control points for gene expression leads to theoretical and logical problems for cell cycle control. Each expressed gene requires a control element to appear in a cell-cycle specific manner; this control element requires another control element and so on, ad infinitum. There are also experimental problems with the current model based on ineffective synchronization methods and problems with microarray measurements of mRNA. Equally important, the efficacy of mRNA variation in affecting changes in protein content is negligible. An alternative view of the cell cycle proposes cycle-independent, invariant accumulation of mRNA during the cell cycle with decreases of specific proteins occurring only during the mitotic period of the cell cycle.  相似文献   

8.
Cyclins regulate the cell cycle by binding to and activating cyclin-dependent kinases (Cdks). Phosphorylation of specific targets by cyclin-Cdk complexes sets in motion different processes that drive the cell cycle in a timely manner. In budding yeast, a single Cdk is activated by multiple cyclins. The ability of these cyclins to target specific proteins and to initiate different cell-cycle events might, in some cases, reflect the timing of the expression of the cyclins; in others, it might reflect intrinsic properties of the cyclins that render them better suited to target particular proteins.  相似文献   

9.
10.
Initiation of DNA synthesis is triggered by the binding of proteins to replication origins. However, little is known about the order in which specific proteins associate with origin sites during the cell cycle. We show that in cycling cells there are at least two different nucleoprotein complexes at oriC. A factor for inversion stimulation (FIS)-bound nucleoprotein complex, present throughout the majority of the cell cycle, switches to an integration host factor (IHF)-bound form as cells initiate DNA replication. Coincident with binding of IHF, initiator DnaA binds to its previously unoccupied R3 site. In stationary phase, a third nucleoprotein complex forms. FIS is absent and inactive oriC forms a nucleoprotein structure containing IHF that is not observed in cycling cells. We propose that interplay between FIS and IHF aids assembly of initiation nucleoprotein complexes during the cell cycle and blocks initiation at inappropriate times. This exchange of components at replication origins is reminiscent of switching between pre- and post-replicative chromatin states at yeast ARS1.  相似文献   

11.
Although inhibition of the ubiquitin proteasome system has been postulated to play a key role in the pathogenesis of neurodegenerative diseases, studies have also shown that proteasome inhibition can induce increased expression of neuroprotective heat-shock proteins (HSPs). The global gene expression of primary neurons in response to treatment with the proteasome inhibitor lactacystin was studied to identify the widest range of possible pathways affected. Our results showed changes in mRNA abundance, both at different time points after lactacystin treatment and at different lactacystin concentrations. Genes that were differentially up-regulated at the early time point but not when most cells were undergoing apoptosis might be involved in an attempt to reverse proteasome inhibitor-mediated apoptosis and include HSP70, HSP22 and cell cycle inhibitors. The up-regulation of HSP70 and HSP22 appeared specific towards proteasome inhibitor-mediated cell death. Overexpression of HSP22 was found to protect against proteasome inhibitor-mediated loss of viability by up to 25%. Genes involved in oxidative stress and the inflammatory response were also up-regulated. These data suggest an initial neuroprotective pathway involving HSPs, antioxidants and cell cycle inhibitors, followed by a pro-apoptotic response possibly mediated by inflammation, oxidative stress and aberrant activation of cell cycle proteins.  相似文献   

12.
New insights into cyclins, CDKs, and cell cycle control   总被引:12,自引:0,他引:12  
Since their initial discovery in yeast, cyclin-dependent kinases have proven to be universal regulators of the cell cycle in all eukaryotes. In unicellular eukaryotes, cell cycle progression is principally governed by one catalytic subunit (cyclin-dependent kinase) that pairs with cell cycle-specific regulatory subunits known as cyclins. Progression through a specific phase of the cell cycle is under the control of a specific class of cyclin. Cell cycle control in multicellular eukaryotes has an additional layer of complexity, as multiple CDKs and cyclins are required. In this review, we will discuss recent advances in the area of cyclins and CDKs, with emphasis on the role of the mammalian proteins in cell cycle control at the cellular and at the organismal level. Many recent surprises have come to light recently as a result of genetic manipulation of cells and mice, and these findings suggest that our understanding of the intricacies of the cell cycle is still rudimentary at best.  相似文献   

13.
We have used a novel technique to study the synthesis, modification and degradation of proteins during the cell cycle in Saccharomyces cerevisiae. Logarithmically growing cells were pulse-labeled twice, with the pulses separated in time by more than one generation. Subsequently, the cells were fractionated as to their position in the cell cycle by centrifugal elutriation, and for different proteins the ratio of radioactive material from the two pulses was then determined. Periodic degradation, synthesis, or modification would produce periodic variations in the ratio of counts. Two-dimensional gel electrophoresis was used to examine 110 different proteins at different times of the cell cycle. All but two proteins had a constant ratio of counts through the cell cycle. This indicates that the rate of synthesis of individual proteins increases exponentially during the cell cycle and that periodic degradation or modification of proteins is not a general feature of the cell cycle in S. cerevisiae.  相似文献   

14.
The septins are a conserved family of GTP-binding proteins that, in the baker''s yeast, assemble into a highly ordered array of filaments at the mother bud neck. These filaments undergo significant structural rearrangements during the cell cycle. We aimed at identifying key components that are involved in or regulate the transitions of the septins. By combining cell synchronization and quantitative affinity-purification mass-spectrometry, we performed a screen for specific interaction partners of the septins at three distinct stages of the cell cycle. A total of 83 interaction partners of the septins were assigned. Surprisingly, we detected DNA-interacting/nuclear proteins and proteins involved in ribosome biogenesis and protein synthesis predominantly present in alpha-factor arrested that do not display an assembled septin structure. Furthermore, two distinct sets of regulatory proteins that are specific for cells at S-phase with a stable septin collar or at mitosis with split septin rings were identified.Complementary methods like SPLIFF and immunoprecipitation allowed us to more exactly define the spatial and temporal characteristics of selected hits of the AP-MS screen.  相似文献   

15.
Early Events in Lymphocyte Transformation by Phytohaemagglutinin   总被引:1,自引:0,他引:1  
Synthesis and phosphorylation of three main nuclear protein fractions were studied in human lymphocytes stimulated by phytohaemagglutinin (PHA). The first fraction to be synthesized and phosphorylated after induction was that of the acidic proteins, followed by that containing the soluble proteins. Synthesis of histories commenced 24 h after exposure to PHA. Distinctive patterns of both synthesis and phosphorylation of the acidic proteins were recorded at different times in the cell cycle, which may reflect activation or suppression of specific cellular functions. Phosphorylation of the histones also occurred, as an early event during lymphocyte transformation and also much later, at the time of DNA synthesis.  相似文献   

16.
The expression of the nrd operon encoding ribonucleotide reductase in Escherichia coli has been shown to be cell cycle regulated. To identify the cis-acting elements required for the cell cycle regulation of the nrd promoter, different 5' deletions as well as site-directed mutations were translationally fused to a lacZ reporter gene. The expression of beta-galactosidase from these nrd-lacZ fusions in single-copy plasmids was determined with synchronously growing cultures obtained by repeated phosphate starvation as well as with exponentially growing cultures by flow cytometry analysis. Although Fis and DnaA, two regulatory proteins that bind at multiple sites on the E. coli chromosome, have been found to regulate the nrd promoter, the results in this study demonstrated that neither Fis nor DnaA was required for nrd cell cycle regulation. A cis-acting upstream AT-rich sequence was found to be required for the cell cycle regulation. This sequence could be replaced by a different sequence that maintained the AT richness. A flow cytometry analysis that combined specific immunofluorescent staining of beta-galactosidase with a DNA-specific stain was developed and employed to study the nrd promoter activity in cells at specific cell cycle positions. The results of the flow cytometry analysis confirmed the results obtained from studies with synchronized cells.  相似文献   

17.
Superficially similar traits in phylogenetically unrelated species often result from adaptation to common selection pressures. Examples of convergent evolution are known at the levels of whole organisms, organ systems, gene networks and specific proteins. The phenotypic properties of living things, on the other hand, are determined in large part by complex networks of interacting proteins. Here we present a mathematical model of the network of proteins that controls DNA synthesis and cell division in the alpha-proteobacterium, Caulobacter crescentus. By comparing the protein regulatory circuits for cell reproduction in Caulobacter with that in budding yeast (Saccharomyces cerevisiae), we suggest that convergent evolution may have created similar molecular reaction networks in order to accomplish the same purpose of coordinating DNA synthesis to cell division. Although the genes and proteins involved in cell cycle regulation in prokaryotes and eukaryotes are very different and (apparently) phylogenetically unrelated, they seem to be wired together in similar regulatory networks, which coordinate cell cycle events by identical dynamical principles.  相似文献   

18.
The protein synthesis patterns at various stages of the cell cycle of Chinese hamster ovary cells were examined by labelling cells with [35S]methionine and then separating the proteins by isoelectric focussing and two-dimensional, nonequilibrium pH gradient gel electrophoresis. We have observed a number of proteins which display quantitative differences in synthesis at specific cell cycle stages and of these the alpha- and beta-tubulins have been identified. A few proteins appear to be uniquely synthesized at specific times during the cell cycle. These include the histones and a modified version of them, which are synthesized only in S phase, and a pair of 21 kilodalton (kDa), pI 5.5 proteins, which appear only in late G2 and mitosis. We have also identified a 58-kDa, pI 7.5 protein which is present at all cell cycle stages except during late G2. This protein appears to have the same temporal properties as a 57-kDa protein called "cyclin" originally described in sea urchin embryos.  相似文献   

19.
20.
We examined the role that blockage of cells in the cell cycle may play in the stimulation of gene amplification and enhancement of drug resistance. We found that several different inhibitors of DNA synthesis, which were each able to block cells at the G1-S-phase boundary, induced an enhanced cycloheximide-sensitive synthesis of an early S-phase cell cycle-regulated enzyme, dihydrofolate reductase, and of other proteins as well. This response was specific, in that blockage at the G2 phase did not result in overproduction of the enzyme. When the cells were released from drug inhibition, DNA synthesis resumed, resulting in a cycloheximide-sensitive elevation in DNA content per cell. We speculate that the excess DNA synthesis (which could contribute to events detectable later as gene amplification) is a consequence of the accumulation of S-phase-specific proteins in the affected cells, which may then secondarily influence the pattern of DNA replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号