首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 664 毫秒
1.
2.
3.
4.
Nonsense-mediated mRNA decay (NMD) is the best-characterized mRNA surveillance mechanism; this process removes faulty mRNAs harboring premature termination codons (PTCs). NMD targets newly synthesized mRNAs bound by nuclear cap-binding proteins 80/20 (CBP80/20) and exon junction complex (EJC), the former of which is thought to recruit the ribosome to initiate the pioneer round of translation. After completion of the pioneer round of translation, CBP80/20 is replaced by the cytoplasmic cap-binding protein eIF4E, which mediates steady-state translation in the cytoplasm. Here, we show that overexpression of eIF4E-T preferentially inhibits cap-dependent steady-state translation, but not the pioneer round of translation. We also demonstrate that overexpression of eIF4E-T or Dcp1a triggers the movement of eIF4E into the processing bodies. These results suggest that the pioneer round of translation differs from steady-state translation in terms of ribosome recruitment.  相似文献   

5.
6.
The recognition and rapid degradation of mRNAs with premature translation termination codons by the nonsense-mediated pathway of mRNA decay is an important RNA quality control system in eukaryotes. In mammals, the efficient recognition of these mRNAs is dependent upon exon junction complex proteins deposited on the RNA during pre-mRNA splicing. In yeast, splicing does not play a role in recognition of mRNAs that terminate translation prematurely, raising the possibility that proteins deposited during alternative pre-mRNA processing events such as 3' end formation might contribute to the distinction between normal and premature translation termination. We have utilized mRNAs with a 3' poly(A) tail generated by ribozyme cleavage to demonstrate that the normal process of 3' end cleavage and polyadenylation is not required for mRNA stability or the detection of a premature stop codon. Thus, in yeast, the distinction between normal and premature translation termination events is independent of both splicing and conventional 3' end formation.  相似文献   

7.
Haem controls its own synthesis in non-erythroid cells primarily by regulation of ALAS1 mRNA stability. Alternative splicing of human ALAS1 generates two mRNAs with different 5'-UTRs: a major one, where exon 1B is omitted, and a minor form containing exon 1B. We show that, unlike the major ALAS1 mRNA, the minor form was resistant to haem-mediated decay. Furthermore, we demonstrate that the ALAS1 5'-UTR alone did not confer haem-mediated decay upon a heterologous mRNA and the inclusion of exon 1B inhibited translation. These data suggest that translation of ALAS1 mRNA itself might be required for destabilisation in response to haem.  相似文献   

8.
无义突变介导的mRNA降解(nonsense mediated mRNA decay, NMD)途径是真核生物体内一种重要的mRNA监督质控机制, 它降解含有由无义突变、错误剪接、移码突变等产生的提前终止翻译密码子(premature translation termination codon, PTC)的mRNA, 从而防止这种mRNA翻译产生的截短型蛋白质对机体造成的伤害. 研究发现, 一些含有PTC的mRNA发生了NMD途径逃逸, 但具体机制仍不清楚.本研究将成视网膜细胞瘤基因1 (retinoblastoma gene 1, RB1)作为NMD途径的靶基因, 构建mini-RB1基因,包括外显子1~14(cDNA)、内含子14 外显子15 内含子15和外显子16~27(cDNA) 的三部分序列, 将其构建到真核表达载体pcDNA 3.1(-)中.根据人类基因组突变数据库选择3个突变位点W99X、G310X和R467X, 构建相应无义突变体.分别将mini RB1基因野生型和无义突变体转入HeLa细胞进行表达.用qRT-PCR检测发现, W99X无义突变体与野生型相比mRNA的水平无显著差异.为了进一步证实mini- RB1(W99X)发生了NMD逃逸, 利用NMD途径抑制剂放线菌酮和转录抑制剂放线菌素D, 分别处理转入野生型的mini RB1基因及其无义突变体mini-RB1(W99X)的哺乳动物细胞, 发现mini-RB1基因无义突变体的mRNA水平与野生型无明显差异, 说明含有W99X无义突变的mini-RB1基因的mRNA发生了NMD逃逸.Western印迹检测mini-RB1基因的蛋白质表达发现, 在无义突变位点W99X下游重新起始了蛋白质的翻译, 因此,PTC下游蛋白质翻译的重新起始可能是导致无义mRNA逃逸NMD途径监控的主要原因.  相似文献   

9.
Nonsense-mediated mRNA decay (NMD) is a surveillance mechanism that degrades mRNAs containing premature translation termination codons. In mammalian cells, a termination codon is ordinarily recognized as "premature" if it is located greater than 50-54 nucleotides 5' to the final exon-exon junction. We have described a set of naturally occurring human beta-globin gene mutations that apparently contradict this rule. The corresponding beta-thalassemia genes contain nonsense mutations within exon 1, and yet their encoded mRNAs accumulate to levels approaching wild-type beta-globin (beta(WT)) mRNA. In the present report we demonstrate that the stabilities of these mRNAs with nonsense mutations in exon 1 are intermediate between beta(WT) mRNA and beta-globin mRNA carrying a prototype NMD-sensitive mutation in exon 2 (codon 39 nonsense; beta 39). Functional analyses of these mRNAs with 5'-proximal nonsense mutations demonstrate that their relative resistance to NMD does not reflect abnormal RNA splicing or translation re-initiation and is independent of promoter identity and erythroid specificity. Instead, the proximity of the nonsense codon to the translation initiation AUG constitutes a major determinant of NMD. Positioning a termination mutation at the 5' terminus of the coding region blunts mRNA destabilization, and this effect is dominant to the "50-54 nt boundary rule." These observations impact on current models of NMD.  相似文献   

10.
11.
12.
The translation of human triosephosphate isomerase (TPI) mRNA normally terminates at codon 249 within exon 7, the final exon. Frameshift and nonsense mutations within the TPI gene that cause translation to terminate prematurely at or upstream of codon 189, within exon 6, result in a decreased level of TPI mRNA (I.O. Daar and L.E. Maquat, Mol. Cell. Biol. 8:802-813, 1988). For all mutations in this group, the decrease is to the same extent, i.e., to approximately 20% of the normal level. We show here that a second group of nonsense mutations that cause translation to terminate prematurely at or downstream of codon 208, in exon 6, did not affect TPI mRNA abundance. Deletion analysis demonstrated that the abundance of translationally active TPI mRNA is a function of both the distance and the polarity of the nonsense codon relative to the final intron in TPI pre-mRNA. Our results indicate that if translating ribosomes are unable to progress to at least a certain position within the penultimate exon relative to the final intron, then the level of the corresponding mRNA will be abnormally low. Studies inhibiting RNA synthesis with dactinomycin demonstrated that a block in translation does not affect the half-life of mature TPI mRNA. The simplest interpretation of our data is that the translation of TPI mRNA in the cytoplasm facilitates the splicing of TPI pre-mRNA or the transport of TPI mRNA across the nuclear envelope or both.  相似文献   

13.
Alternative promoter and 5' exon generate a novel Gs alpha mRNA   总被引:4,自引:0,他引:4  
Several species of mRNA have been shown to encode the alpha subunit of the stimulatory GTP-binding regulatory protein, Gs alpha. The various Gs alpha mRNAs are generated through alternative splicing of a single precursor RNA and through the use of alternative acceptor splice sites. We now report the existence of a Gs alpha mRNA that uses a previously unidentified promoter and leading exon (termed exon 1'). In both the canine and human Gs alpha genes, exon 1' is located 2.5 kilobases 5' of exon 1. Exon 1' does not contribute an in-frame ATG, and thus its mRNA encodes a truncated form of Gs alpha. Initiation of translation is predicted to begin at an AUG in exon 2, as demonstrated both by in vitro translation and COS cell expression studies.  相似文献   

14.
Post‐splicing activities have been described for a subset of shuttling serine/arginine‐rich splicing regulatory proteins, among them SF2/ASF. We showed that growth factors activate a Ras‐PI 3‐kinase‐Akt/PKB signaling pathway that not only modifies alternative splicing of the fibronectin EDA exon, but also alters in vivo translation of reporter mRNAs containing the EDA binding motif for SF2/ASF, providing two co‐regulated levels of isoform‐specific amplification. Translation of most eukaryotic mRNAs is initiated via the scanning mechanism, which implicates recognition of the m7G cap at the mRNA 5′‐terminus by the eIF4F protein complex. Several viral and cellular mRNAs are translated in a cap‐independent manner by the action of cis‐acting mRNA elements named internal ribosome entry sites that direct internal ribosome binding to the mRNA. Here we use bicistronic reporters that generate mRNAs carrying two open reading frames, one translated in a cap‐dependent manner while the other by internal ribosome entry site‐dependent initiation, to show that in vivo over‐expression of SF2/ASF increases the ratio between cap‐dependent and internal ribosome entry site‐dependent translation. Consistently, knocking‐down of SF2/ASF causes the opposite effect. Changes in expression levels of SF2/ASF also affect alternative translation of an endogenous mRNA, that one coding for fibroblast growth factor‐2. These results strongly suggest a role for SF2/ASF as a regulator of alternative translation, meaning the generation of different proteins by the balance among these two translation initiation mechanisms, and expand the known potential of SF2/ASF to regulate proteomic diversity to the translation field. J. Cell. Biochem. 107: 826–833, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
The in vitro translation products of mRNA pretreated with methylmercuric hydroxide were examined by giant two-dimensional gel electrophoresis. In addition to increasing overall translational efficiency approximately 2.5-fold, methylmercuric hydroxide selectively increases the translation of mRNAs coding for higher molecular mass (greater than 45 kDa) proteins, allowing the routine resolution of 1500 [35S]methionine-labeled proteins. This yields 3 to 4-fold the number of translation products seen with smaller size two-dimensional gels. With this method we compare thymus cell proteins synthesized in vivo with the products of in vitro translation of mRNA recovered from thymus cells. Fifty-eight percent of the translation products are qualitatively the same as proteins synthesized in vivo (similar Mr, pI, and neighboring proteins), with 64% of these also being quantitatively similar (less than 5-fold difference). A comparison of thymus mRNA in vitro translation products with those coded for by mRNA from liver reveals only 32% qualitative similarity, with 63% of these also being quantitatively similar. These results are discussed in relation to predictions of mRNA abundance and complexity based on DNA:RNA hybridization data. Giant two-dimensional gel separations of in vitro translation products appear to be useful for detecting less abundant cellular mRNAs, including those that may be regulated by hormones or other physiological mediators.  相似文献   

16.
Pumilio is a sequence-specific RNA-binding protein that regulates translation from the relevant mRNA. The PUF-domain, the RNA-binding motif of Pumilio, is highly conserved across species. In the present study, we have identified two pumilio genes (pumilio-1 and pumilio-2) in rainbow trout and analyzed their expression patterns in its tissues. Pumilio-1 mRNA and pumilio-2A mRNA code for typical full length Pumilio proteins that contain a PUF-domain, whereas pumilio-2B mRNA is a splice variant of pumilio-2 and encodes a protein that lacks the PUF-domain. We have also identified a novel 72-bp exon that has not been reported in other animal species but is conserved in fish species. The insertion of this novel exon leads to the expression of an isoform of the Pumilio-2 protein with a slightly altered conformation of the PUF-domain. Pumilio-1 mRNA and pumilio-2A mRNA (irrespective of the presence of the 72-bp exon) are expressed in both the brain and ovaries at high levels, whereas pumilio-2B mRNA is expressed at low levels in all the rainbow trout tissues examined. Western blot analysis also indicates that the full length Pumilio proteins are expressed predominantly in the brain and ovaries. These data suggest that the Pumilio proteins have physiological roles and are involved in regulatory mechanisms in rainbow trout.This work was in part supported by a grant from the Akiyama Foundation to E.I. Nucleotide sequence data for rainbow trout pumilio-1 and pumilio-2 have been deposited in the DDBJ/EMBL/GenBank databases.  相似文献   

17.
18.
19.
General RNA binding proteins render translation cap dependent.   总被引:17,自引:2,他引:15       下载免费PDF全文
Translation in rabbit reticulocyte lysate is relatively independent of the presence of the mRNA m7G cap structure and the cap binding protein, eIF-4E. In addition, initiation occurs frequently at spurious internal sites. Here we show that a critical parameter which contributes to cap-dependent translation is the amount of general RNA binding proteins in the extract. Addition of several general RNA binding proteins, such as hnRNP A1, La autoantigen, pyrimidine tract binding protein (hnRNP I/PTB) and the major core protein of cytoplasmic mRNP (p50), rendered translation in a rabbit reticulocyte lysate cap dependent. These proteins drastically inhibited the translation of an uncapped mRNA, but had no effect on translation of a capped mRNA. Based on these and other results, we suggest that one function of general mRNA binding proteins in the cytoplasm is to promote ribosome binding by a 5' end, cap-mediated mechanism, and prevent spurious initiations at aberrant translation start sites.  相似文献   

20.
L J Otero  M P Ashe    A B Sachs 《The EMBO journal》1999,18(11):3153-3163
Translation initiation in extracts from Saccharomyces cerevisiae involves the concerted action of the cap-binding protein eIF4E and the poly(A) tail-binding protein Pab1p. These two proteins bind to translation initiation factor eIF4G and are needed for the translation of capped or polyadenylated mRNA, respectively. Together, these proteins synergistically activate the translation of a capped and polyadenylated mRNA. We have discovered that excess Pab1p also stimulates the translation of capped mRNA in extracts, a phenomenon that we define as trans-activation. Each of the above activities of Pab1p requires its second RNA recognition motif (RRM2). We have found that RRM2 from human PABP cannot substitute functionally for yeast RRM2. Using the differences between human and yeast RRM2 sequences as a guide, we have mutagenized yeast RRM2 and discovered residues that are required for eIF4G binding and poly(A)-dependent translation but not for trans-activation. Similarly, other residues within RRM2 were found to be required for trans-activation but not for eIF4G binding or poly(A)-dependent translation. These data show that Pab1p has at least two biochemically distinct activities in translation extracts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号