首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— Diphtheria toxin (DT) did not produce measurable degradation of myelin proteins or sulphatide in sciatic nerves of chick embryos after incubation in vitro for 4 h. In contrast, DT inhibited the in vitro incorporation of L-[U-14C]leucine into myelin proteins by the nerves after a delay of 1 h. Separation of the myelin proteins by SDS-polyacrylamide gel electrophoresis indicated that the synthesis of Wolfgram proteins and proteins not entering the gel was inhibited by 21–22 per cent, whereas synthesis of myelin proteolipid and basic proteins was inhibited by 79–88 per cent. Incorporation of 35SO4 into myelin [35S]sulphatide was also inhibited by DT after a delay of 2 h. The inhibition of [35S]sulpha-tide incorporation into myelin caused by DT differed from that observed with puromycin in that it did not depend on depletion of an intracellular transport lipoprotein. Instead, the inhibition seemed to be secondary to the decreased synthesis of myelin proteolipid and basic proteins.  相似文献   

2.
Purified myelin fraction isolated from rat brain white matter contained Mg2+-dependent protein kinase capable of phosphorylation of myelin basic proteins. The Mg2+-supported kinase was markedly stimulated (two- to fivefold) by micromolar concentrations of free Ca2+ with and without Triton X-100 in the assay, the degree of stimulation being greater with the detergent present. Cyclic AMP, on the other hand, failed to show any effect on phosphorylation of myelin in the absence of Triton X-100 and in the presence of Triton caused only 25–30% stimulation. The phosphorylation reaction was temperature dependent and exhibited a pH optimum at pH 6.5. Apparent affinity toward MgATP2? was found to be about 70 μm and Ca2+ had no effect on this parameter. Dependence on MgCl2 of myelin phosphorylation indicated the presence of high- and low-affinity sites toward Mg2+; Ca2+ appeared to influence the low-affinity site. Maximal level of phosphorylation was attained by 10–15 min at 30 °C and it declined at longer incubation times due to phosphatase activity present in the preparation. Stimulatory effect of Ca2+ on phosphorylation was not due to inhibition of phosphatase activity. Dephosphorylation experiments showed that neither cyclic AMP nor Ca2+ influenced the myelin phosphatase activity. Autoradiographic analysis revealed that phosphorylation of myelin basic proteins accounted for nearly 90% of total myelin phosphorylation. This was supported by the observation that the HCl extract of myelin contained 85% of total activity and comigrated with purified myelin basic proteins. Basal and Ca2+-stimulated phosphorylation of basic proteins were due to phosphorylation of serines mainly, although threonine was phosphorylated to a minor extent. Within myelin, Ca2+ and cyclic AMP kinases are differentially bound. It appears that the myelin kinase (studied in vitro) is primarily influenced by Ca2+ rather than cyclic AMP. Inhibitors (Type I and Type II) of cyclic nucleotide-stimulated protein kinases had no effect on the Ca2+-stimulated phosphorylation although basal and cyclic AMP-stimulated phosphorylation was inhibited, indicating that the Ca2+ kinase is a separate and distinct enzyme from the cyclic AMP-stimulated and basal kinase(s). Also, leupeptin, a protease inhibitor, did not influence basal, cyclic AMP-stimulated, or Ca2+-stimulated myelin phosphorylation, indicating that under the conditions used protease(s) did not alter the myelin kinase activity. The potential significance of phosphorylation of myelin basic proteins and the stimulatory action of Ca2+ on this reaction are discussed.  相似文献   

3.
Z2+ appears to stabilize the myelin sheath but the mechanism of this effect is unknown. In a previous report we have shown that zinc binds to CNS myelin basic protein (MBP) in the presence of phosphate and this results in MBP aggregation. For this paper we used a solid phase zinc blotting assay to identify which myelin proteins bind zinc. MBP and a 58 kDa band were found to be the major targets of65Zn binding. Moreover, using fluorescence, light scattering and electron microscopy we investigated the binding of zinc and other cations to purified MBP in solution. Among the cations tested for their ability to interfere with the binding of zinc, the most effective were cadmium, mercury and copper, but only cadmium and mercury increased the scattering intensity, whereas MBP aggregation was not inhibited by copper ions. Thus, the effect of zinc on the formation of MBP clusters seems to be specific.  相似文献   

4.
The existence of an endogenous protein kinase activity and protein phosphatase activity in myelin membrane from mammalian brain has now been well established. We found that under all conditions tested the myelin basic protein is almost the only substrate of the endogenous protein kinase in myelin of bovine brain. The protein kinase activity is stimulated by Ca2+ in the micromolar range. Optimal activity is reached at a free Ca2+ concentration of about 2 μM. Myelin membrane vesicles were prepared and then shown to be sealed by a light-scattering technique. After preloading with 45Ca2+, 86Rb+, or 22Na+, the self-diffusion (passive outflux) of these ions from myelin membrane vesicles was measured. Ionophores induced a rapid, concentration-dependent outflux of 80–90% of the cations, indicating that only a small fraction of the trapped ions was membrane bound. There was no difference in the diffusion rates of the three cations whether phosphorylated (about 1 mol phosphate per myelin basic protein) or non-phosphorylated vesicles were tested. In contrast, a small but significant decrease in permeability for Rb+ and Na+ was measured, when the vesicles were pretreated with ATP and Mg2+.  相似文献   

5.
Human myelin basic protein isolated from the brains of individuals who died with multiple sclerosis was more potent in inducing the aggregation of egg phosphatidylcholine vesicles than was the basic protein isolated from the brains of normal individuals. The portion of myelin basic protein which bound to egg phosphatidylcholine vesicles was separated from the free protein by sucrose density gradient centrifugation. Similar amounts of basic protein from normal or from multiple sclerosis brains are bound to the lipid and no consistent differences in the NG, NG dimethyl-arginine content of the protein fractions have been found.  相似文献   

6.
In attempts to elucidate mechanisms of demyelination in the twitcher mouse (Twi), phosphorylation and methylation of myelin basic protein (MBP) were examined in the brainstem and spinal cord of this species. Phosphorylation of MBP in isolated myelin by an endogenous kinase and an exogenous [32P]ATP was not impaired and protein kinase C activity in the brain cytosol was not reduced. When the methylation of an arginine residue of MBP was examined in slices of the brainstem and spinal cord, using [3H]methionine as a donor of the methyl groups, no difference was found between Twi and the controls. Radioactivity of the [3H] methionine residue of MBP of Twi was also similar to that of the controls. Thus, accumulation of psychosine in Twi does not interfere with the activity of endogenous kinase, methylation of MBP, and the synthesis and transport of MBP into myelin membrane.  相似文献   

7.
Phosphorylation in vivo of four basic proteins of rat brain myelin   总被引:15,自引:3,他引:12       下载免费PDF全文
When rat brain myelin was examined by sodium dodecyl sulphate/polyacrylamideslab-gel electrophoresis followed by fluorography of the stained gel, it was found that a host of proteins of rat brain myelin were labelled 2, 4 and 24h after the intracerebral injection of H332PO4. Among those labelled were proteins migrating to the positions of myelin-associated glycoprotein, Wolfgram proteins, proteolipid protein, DM-20 and basic proteins. The four basic proteins with mol.wts. 21000, 18000 (large basic protein), 17000 and 14000 (small basic protein) were shown to be phosphorylated after electrophoresis in both acid-urea- and sodium dodecyl sulphate-containing gel systems followed by fluorography. The four basic proteins imparted bluish-green colour, after staining with Amido Black, which is characteristic of myelin basic proteins. The four basic proteins were purified to homogeneity. Fluorography of the purified basic proteins after re-electrophoresis revealed the presence of phosphorylated high-molecular-weight `polymers' associated with each basic protein. The amino acid compositions of the phosphorylated large basic protein and small basic proteins are compatible with the amino acid sequences. Proteins with mol.wts. 21000 and 17000 gave the expected amino acid composition of myelin basic proteins. Radiolabelled phosphoserine and phosphothreonine were identified after partial acid hydrolysis of the four purified basic proteins. The [32P]phosphate–protein bond in the basic protein was stable at an acidic pH but was readily hydrolysed at alkaline pH, as would be expected of phosphoester bonds involving both serine and threonine residues. Double-immunodiffusion analysis demonstrated that the four phosphorylated proteins showed complete homology when diffused against antiserum to a mixture of small and large basic proteins. Since the four basic proteins of rat brain myelin were phosphorylated both in vivo and in vitro it is postulated that the same protein kinase is responsible for their phosphorylation in both conditions.  相似文献   

8.
We have tested the hypothesis that the turnover of phosphatidylcholine in subcellular fractions of rat brain is a function of the age at which this lipid is deposited. Rats, 60 days of age, were injected intracranially with [2-3H]glycerol and either [methyl-14C]choline (to label the base moiety) or [U-14C]glucose (to label acyl moieties). Littermates were killed up to 90 days after injection and brain microsomes and myelin isolated. Lipids were extracted and the phosphatidylcholine was isolated by 2-dimensional TLC and hydrolyzed to its constituent moieties. The 3H in the glycerol backbone and 14C in the choline or acyl residues was quantitated. The microsomal and myelin 3H/14C ratios decreased with time with either set of precursors, indicating that labeled choline and acyl moieties were reutilized more efficiently than the glycerol backbone. The various precursors exhibited first order decay curves with half-lives for the glycerol backbone of 6 and 11 days for the microsomal and myelin fractions respectively. These results contrast with those previously obtained with identical experimental procedures when 17-day-old animals were injected. In that study, although much of the phosphatidylcholine turned over rapidly as for the older animals, by 2 weeks after injection most of the remaining phosphatidylcholine was turning over more slowly with a half-life of 13 and 25 days for microsomes and myelin respectively (Miller et al., 1977). The base and acyl moieties also had a corresponding shorter half-life in older animals relative to the slow turnover phase in younger rats.  相似文献   

9.
Myelin basic protein (MBP) is predominantly found in the membranes of the myelin sheath of the central nervous system and is involved in important protein-protein and protein-lipid interactions in vivo and in vitro. Furthermore, divalent transition metal ions, especially Zn2+ and Cu2+, seem to directly affect the MBP-mediated formation and stabilization of the myelin sheath of the central nervous system. MBP belongs to the realm of intrinsically disordered proteins, and only fragmentary information is available regarding its partial structure(s) or supramolecular arrangements. Here, using standard continuous wave and modern pulse electron paramagnetic resonance methods, as well as dynamic light scattering, we demonstrate the uptake and specific coordination of two Cu2+ atoms or one Zn2+ atom per MBP molecule in solution. In the presence of phosphates, further addition of divalent metal ions above a characteristic threshold of four Cu2+ atoms or two Zn2+ atoms per MBP molecule leads to the formation of large MBP aggregates within the protein solution. In vivo, MBP-MBP interactions may thus be mediated by divalent cations.  相似文献   

10.
Y Iwasa  T Iwasa  K Matsui  K Higashi  E Miyamoto 《Life sciences》1981,29(13):1369-1377
Chromatin associated proteins such as histone and protamine and myelin basic protein inhibit the activities of calmodulin-dependent cyclic nucleotide phosphodiesterase and myosin light chain kinase supported by Ca2+ and calmodulin in a dose-dependent manner. The inhibition of these enzymes induced by the proteins is completely abolished by high concentration of calmodulin but not with that of Ca2+. Kinetic analysis of this inhibition reveals that the proteins inhibit these enzyme activities in a competitive fashion with calmodulin. The proteins bind to calmodulin on a calmodulin coupled-agarose affinity column in the presence of Ca2+. It is suggested that endogenous basic proteins interact with calmodulin and may modulate intracellular regulation by calmodulin.  相似文献   

11.
High resolution 13C and 1H NMR spectra of myelin basic protein over a range of pH and concentration indicate that intramolecular folding of the polypeptide chain occurs in the region of residues 8–116. As the pH is raised and the net charge on the protein decreased, intermolecular aggregation occurs between these same regions. The residues 81–118 are invariant in different species and this region is the locus of several chemical specificities of the protein.  相似文献   

12.
Neutral protease is shown to be present in cell-free human cerebrospinal fluid. Incubation of heated human myelin with CSF at 25°C resulted in a marked reduction of myelin basic protein (MBP) with time. Degradation products appeared at apparent mol wt 14 KDa and 12 KDa on polyacrylamide gel electrophoresis. Optimal pH of the protease was 7.0. This protease was activated by calcium ion. Degradation of MBP was inhibited by FOY305 (camostat mesilate), Trasylol®, and Leupeptin, but not a specific calcium-activated neutral protease inhibitor, E-64-a. FOY305, which is a synthesized specific serine protease inhibitor, was the strongest inhibitor of all. The role of this protease in CSF has not been elucidated. In may be related to the physiological turnover of MBP, and may affect myelin maintenance in pathological conditions such as demyelination.  相似文献   

13.
Mice ranging in age from 14 to 39 days were injected intracerebrally with [3H]lysine and rates of incorporation of the isotope were measured into total trichloroacetic acid-precipitable protein and purified myelin basic proteins (MBPs). MBPs were isolated by O-(carboxymethyl)-cellulose chromatography of pH 3 extracts prepared from chloroform-methanol insoluble residues of whole brains. The MBPs prepared in this fashion were further separated by polyacrylamide gel electrophoresis. The gels were sliced and the radioactivity incorporated into each of the two proteins was determined. Analysis of the rates of synthesis of the two basic proteins (using a 2-h labeling period) as a function of age revealed that synthesis of both proteins appeared to peak at about 18 days of age in the mouse. These data suggest that the maximum rate of MBP synthesis coincides with the age of maximal myelin deposition in the mouse. Furthermore the relative rates of synthesis of L and S changed considerably over the developmental period examined. It was observed that the ratio of the rates of synthesis of the small:large basic protein (S/L) increased by approximately 50% between 2 and 4 weeks and declined thereafter. Throughout the developmental period examined, however, the small basic protein appeared to be synthesized at a greater rate than the large protein. The latter data are consistent with previous observations by us and other workers that mouse and rat myelin becomes increasingly enriched in the small relative to the large basic protein with maturation of the membrane.  相似文献   

14.
We report the NMR assignment of 18.5 kDa recombinant murine myelin basic protein (MBP) in 100 mM KCl as a prerequisite to structural analyses of its Ca2+-dependent interaction with calmodulin.  相似文献   

15.
Equilibrium and nonequilibrium competitive inhibition analyses of a number of antisera to peptide S81 and S82 sequences were carried out through the use of inhibition radioimmunoassays with [125I]S81, [125I]S82, and [125I]S79 and a panel containing 18 related peptides and five myelin basic protein preparations. Two principal determinants were identified, one of them sequential, the other nonsequential. The sequential determinant involved a peptide at or near the C-terminal end of S82 that could be blocked by an interchange of asparagine for glycine at the C terminus. The nonsequential determinant was dominant for a number of rabbit and rat antisera, both anti-S82 and anti-S81, and was shared not only by S81 and S82 but also by S8 and S80, i.e., the family of residues of bovine MBP sequence 69–83. Neither determinant was expressed in any of the myelin basic protein preparations, and the nonsequential determinant was not expressed in peptide sequences smaller than S8.  相似文献   

16.
We examined the effects of endogenous basic proteins rich in the amino acidL-arginine on neuronal NO synthase activity by monitoring cyclic GMP formation in intact neuron-like neuroblastoma N1E-115 cells. Histone, protamine and myelin basic protein significantly stimulated cyclic GMP formation, both in a time- and concentration-dependent manner. These effects were blocked by hemoglobin and NO synthase inhibitors. Removal of the extracellular/intracellular Ca2+ gradient by a Ca2+ chelator completely abolished the cyclic GMP responses elicited by histone and protamine, suggesting that influex of extracellular Ca2+ might be involved in their activation of NO synthase. The effects of myelin basic protein on cyclic GMP formation, however, appeared to be due to Ca2+ release from intracellular stores. In cytosolic preparations of rat cerebellum, these basic proteins inhibited the metabolism ofL-arginine intoL-citrulline by NO synthase. We conclude from our findings that endogenous basic proteins might be involved in the regulation of neuronal NO synthase activity. Their effects on the enzyme could be either stimulatory or inhibitory, depending on whether the basic proteins exert their effects extracellularly or intracellularly, respectively.  相似文献   

17.
Small unilamellar vesicles have been prepared from phosphatidylethanolamine by sonication of the lipid in aqueous buffers of low ionic strength and high pH. These vesicles and their interactions with various di- and trivalent cations have been characterized using freeze-fracture electron microscopy. Phosphatidylethanolamine from 4 sources was examined: Hens' yolk phosphatidylethanolamine, human grey matter phosphatidylethanolamine, Escherichia coli phosphatidylethanolamine and dimyristoyl phosphatidylethanolamine. The phosphatidylethanolamine from natural sources formed spherical, uniform 20–40 nm vesicles while dimyristoyl phosphatidylethanolamine formed larger, 70 × 25 nm, disc-shaped vesicles when sonicated above the phase transition temperature. Fusion of the unilamellar egg phosphatidylethanolamine, E. coli phosphatidylethanolamine and human grey matter phosphatidylethanolamine vesicles was induced by dialysis against buffers containing 2.0 nM Ca+ or 3.0 mM Mg2+. The fusion of the vesicles resulted in the precipitation of the lipid and the formation of multilamellar and, in some cases, hexagonal II structures. Dimyristoyl phosphatidylethanolamine vesicles were precipitated at 55°C by 1.0 mM Ca+ or 2.0 mM Mg2+. Treatment of the calcium- and magnesium-precipitated vesicles of hen's egg yolk phosphatidylethanolamine, E. coli phosphatidylethanolamine, human grey matter phosphatidylethanolamine and dimyristoyl phosphatidylethanolamine with EDTA resulted in resuspension of the lipid. The specific size and shape of the vesicles formed in this manner depends on the type of phosphatidylethanolamine and ion involved. Dialysis of the Ca+- and Mg2+-precipitated egg phosphatidylethanolamine vesicles against buffer containing no Ca+, Mg2+ or EDTA also resulted in dissociation of the precipitate and formation again of a new vesicle population. This evidence indicates that the Ca+ and Mg2+ are not strongly bound to the phosphatidylethanolamine.Egg phosphatidylethanolamine vesicles would fuse in the presence of many di- and trivalent ions. Egg phosphatidylethanolamine vesicles were precipitated by beryllium, aluminum, chromium, manganese, cobalt, nickel, copper, zinc, strontium, cadmium, barium, lanthanium, mercury and lead. The amount of ion required to precipitate the vesicles and the type of structure resulting from the fusion of the vesicles was found to be unique for each ion.Small unilamellar vesicles prepared from egg phosphatidylethanolamine were reacted with several basic proteins (cytochrome c, basic protein from human myelin, protamine, poly-l-lysine and cationically-modified ferritin). The basic proteins also initiated the fusion of egg phosphatidylethanolamine vesicles but these proteins did not fuse egg phosphatidylcholine vesicles nor did normal ferritin initiate fusion. Human myelin basic protein initiated the fusion of dimyristoyl phosphatidylethanolamine vesicles above and below the phase transition of this lipid.  相似文献   

18.
The localization of proteins in myelin was studied by the use of a non-penetrating penetrating reagent. Tritiated 4,4′-diisothiocyano-2,2′-ditritiostilbene disulfonic acid was used to label the isolated myelin membrane. The membrane was labelled, the basic protein and the hydrophobic protein, lipophilin, were isolated. After 10 min of exposure to the reagent, the specific activity of lipophilin was found to be 10 times greater than that of the basic protein. Water shock did not alter the specific activities. However, sonication increased the specific activity of lipophilin but not that of basic protein. When the isolated proteins were labelled with 3H-labelled, 4,4′-diisothiocyano-2,2′-ditritiostilbene disulfonic acid, the specific activity of the basic protein was 10 times that of lipophilin. We concluded that the low specific activity of basic protein isolated from the labelled membrane was due to the inaccessible position of this protein in the membrane bilayer.  相似文献   

19.
Treatment of bovine brain myelin basic protein with 42-kDa mitogen-activated protein kinase [p42 MAPK or extracellular signal-regulated kinase 2 (ERK2)] in the presence of ATP and Mg2+ results in phosphorylation of Thr94 and Thr97. Thr94 is not previously known to be an ERK2 phosphorylation site. Both residues are phosphorylated to about the same extent and are in the highly conserved segment Asn91-Ile-Val-Thr94-Pro-Arg-Thr97-Pro-Pro-Pro-Ser101. MALDI mass spectrometry before and after ERK2 treatment revealed the addition of two phosphate groups to the protein. Tryptic cleavage resulted in a single fragment (positions 91–104) carrying the observed mass increase. Tandem mass spectrometry applied to the tryptic peptide showed that both Thr94 and Thr97 are acceptors of phosphate. A singly phosphorylated species could not be detected. Identification of the ERK2 phosphorylation site Thr94 in bovine myelin basic protein reveals a nontraditional phosphate acceptor position, preceded by three noncharged residues (Asn-Ile-Val). Proline at position –2 or –3 from the phosphorylation site, typical for the recognition sequence of proline-directed kinases, is missing. The results provide information for delineation of a further substrate consensus motif for ERK2 phosphorylation.  相似文献   

20.
Abstract— Brain slices from 17 day rats were incubated with [3H]galactose and [35S]sulphate to label cerebroside and sulphatide. Myelin was isolated by centrifugation on a sucrose density gradient. Following lipid extraction and alkaline methanolysis, cerebroside and sulphatide were isolated by tic, and radioactivity was measured. Appearance of [3H]cerebroside and [3H]sulphatide in myelin showed a lag of less than 15min, while appearance of [35S]sulphatide in myelin showed a longer lag of about 30min. In chase experiments, the rate of appearance of [3H]cerebroside and [3SS]sulphatide in the non-myelin fraction and of [3H]cerebroside in the myelin fraction slowed markedly after the chase. In contrast, [35S]sulphatide continued to increase in myelin at a normal rate for 30min after the chase, then stopped, while 3H from galactose continued to accumulate in myelin sulphatides for 60 min. These data are interpreted to demonstrate an interval of 30 min between synthesis of cerebroside and its sulphation in the non-myelin fraction, and another delay of 30 min between sulphation and appearance in myelin. The distribution of newly synthesized cerebroside and sulphatide between myelin and non-myelin fractions also supported the concept that a complex metabolic pool of cerebroside in the non-myelin fraction is precursor to sulphatide of myelin. For comparison, entry of phosphatidyl choline and phosphatidyl ethanolamine into myelin was followed with [2-3H]glycerol as precursor. Like cerebroside, both phospholipids showed little delay in their initial appearance in myelin, and prompt cessation of their addition after a chase with unlabeled precursor. These results are consonant with either rapid entry of these three lipids into myelin after synthesis at an extra-myelin site, or synthesis of the lipids within myelin itself.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号