首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary The influence of extracellular Na (Na o ) on cellular Ca transport and distribution was studied in rat kidney slices. Calcium efflux from prelabeled slices was depressed when Na o was completely replaced by choline or tetraethylammonium (TEA) ions and it was markedly stimulated when Na was reintroduced in a Na-free medium. However, reducing Na o (with choline or TEA as substituting ions) did not increase the total slice40Ca, their total exchangeable Ca pool, or the40Ca or45Ca of mitochondria isolated from these slices. Kinetic analyses of steady-state45Ca desaturation curves showed that reducing Na o depressed the exchange of Ca across the plasma membrane, slightly decreased the cytosolic Ca pool, but did not significantly affect the mitochondrial Ca pool and Ca cycling. Ouabain (10–3 m) which should reduce the Na gradient across the plasma membrane had no effect on calcium distribution and transport. These results suggest that in kidney cells low Na o depresses Ca influx as well as Ca efflux; there may be an interaction between Na and Ca at a possible carrier located in the plasma membrane, but there is no Na/Ca exchange as described in several excitable tissues.  相似文献   

2.
The giant axon of the squid has been extensively used as a model for studying Ca regulation in excitable cells. Different techniques (extrusion, injection and dialysis) have been employed to characterize Ca fluxes across the axon membrane. Since both Ca efflux and influx are markedly dependent on [Ca2+]i, considerable effort has been dedicated to determine the resting value of the [Ca2+]i. Results from different laboratories indicate that the [Ca2+]i, in a normal fibre, range from 20–100 nM. Under dialysis conditions (internal control), with an imposed [Ca2+]i of 80 nM, Ca influx is balanced by an outward Ca movement of about 40 f/CS. Ca extrusion occurs through two parallel transport systems: one having a high affinity for [Ca2+]i, dependent on ATP, not affected by Nai, Nao, Cao, Mgo and inhibited by internal vanadate (uncoupled component), the other, more prominent at relatively high [Ca2+]i, does not require ATP, is inhibited by Nai activated by Nao and not inhibited by vanadate. (Nao-dependent component). The existence of these two systems provide the axon with an effective way to maintain in the long term a constant low [Ca2+]i in spite of short term fluctuations due to increased Ca influx during nervous activity.  相似文献   

3.
The interaction of extracellular Na (Nao), K (Ko), and strophanthidin with the Na-K pump of the human red blood cell has been investigated. Inhibition by submaximal concentrations of strophanthidin rapidly reaches a level which does not increase further over a relatively long period of time. Under these circumstances, it is possible to apply a steady-state kinetic analysis to the interaction of Nao, Ko, and strophanthidin with the pump. In Na-free solutions, strophanthidin increases the apparent K1/2 of the pump for Ko, but does not change the form of the relation between the reciprocal of the active K influx (iMKP–1) and the reciprocal of [Ko] ([Ko]–1); the relation both in the presence and absence of strophanthidin is adequately described by a straight line. In solutions containing Na, strophanthidin changes the form of the curve describing the relation between iMKP–1 vs. [Ko]–1; the curve becomes more parabolic in solutions containing strophanthidin. The rate of ouabain binding to K-free cells has also been measured; in the absence of K, the rate of binding is unaffected by Nao. The data are considered in terms of a simple kinetic model. The findings can be explained if it is supposed that at low external K the form of the pump combined with one Nao is more likely to combine with strophanthidin than is the uncombined form of the pump. The uncombined form of the pump is more likely to combine with K even at very low Ko than with strophanthidin.  相似文献   

4.
Studies on HeLa cells in spinner culture at pH 7.0 and 37° have shown that [Na]i decreased and [K]i increased with increasing [Ca]o. In Na-free (choline) medium [K]i remained high whether or not Ca was present in the medium. [Na]i and [K]i approached a new steady state within 1 min after transfer to Ca-free medium and returned to the initial values within 15 min upon readdition of Ca. 40% of the cell Ca exchanged within 1 min followed by a slow exchange of the remaining Ca over several hours. [Ca]i increased with decreasing [Na]o but was independent of [K]o. Equimolar Mg did not substitute for Ca in maintaining low [Na]i and high [K]i. Under steady-state conditions about 50% of the cell Na exchanged in accordance with a single rate constant. The initial Na influx was 270, 100, and 2.5 µM/liter of cell water/sec for 0, 0.10, and 1.0 mM [Ca]o, respectively. When Na transport was inhibited with strophanthidin and [Na]i and [K]i allowed to reach a steady state, Na influx was more rapid for cells incubated in Ca-free medium than for cells incubated in medium containing 1.0 mM Ca. These results suggest that Ca competes with Na at the cell membrane and thus controls the passive diffusion of Na into the cell.  相似文献   

5.
Summary The hypothesis that the pause that follows overdrive of the sino-atrial node (SAN) might be the net result of overdrive excitation and overdrive suppression was tested by studying rate and force patterns induced by overdrive in isolated guinea pig SAN superfused in vitro. In Tyrode solution, the pause is short and changes but little with longer or faster drives. In high [K+]o solution, longer overdrives increase force percent-wise more than in Tyrode solution, shorten the pause and are followed by greater rate and force. When the SAN (quiescent in high [K+]o) is driven at 6/min, faster overdrives are followed by stronger, slowly decreasing contractions. Alternating 10 s drives with 10 s pauses have little effect on force and rate in Tyrode solution, but progressively increase force and rate in high [K+]o. Cesium has effects similar to high [K+]o. High [Ca2+]o increases force and in high [K+]o increases the rate as well as it shortens the pause, whereas Ni2+ decreases force as well as rate and lengthens the pause. Barium dissociates the effects on force and rate.␣Lidocaine and tetrodotoxin decrease rate and force, and increase the pause duration. In overdrive excitation, the increase in rate is associated with an enhancement of diastolic voltage oscillations. It is concluded that in SAN the prevalence of Ca2+ load leads to overdrive excitation whereas the prevalence of␣Na+ load leads to overdrive suppression. In Tyrode solution, the pause after drive appears to be the net␣result of these two different mechanisms.  相似文献   

6.
The mechanisms of the hyperpolarizing and depolarizing actions of cesium were studied in cardiac Purkinje fibers perfused in vitro by means of a microelectrode technique under conditions that modify either the Na+-K+ pump activity or If. Cs+ (2 mM) inconsistently increased and then decreased the maximum diastolic potential (MDP); and markedly decreased diastolic depolarization (DD). Increase and decrease in MDP persisted in fibers driven at fast rate (no diastolic interval and no activation of If). In quiescent fibers, Cs+ caused a transient hyperpolarization during which elicited action potentials were followed by a markedly decreased undershoot and a much reduced DD. In fibers depolarized at the plateau in zero [K+]o (no If), Cs+ induced a persistent hyperpolarization. In 2 mM [K+]o, Cs+ reduced the undershoot and suppressed spontaneous activity by hyperpolarizing and thus preventing the attainment of the threshold. In 7 mM [K+]o, DD and undershoot were smaller and Cs+ reduced them. In 7 and 10 mM [K+]o, Cs+ caused a small inconsistent hyperpolarization and a net depolarization in quiescent fibers; and decreased MDP in driven fibers. In the presence of strophanthidin, Cs+ hyperpolarized less. Increasing [Cs+]o to 4, 8 and 16 mM gradually hyperpolarized less, depolarized more and abolished the undershoot. We conclude that in Purkinje fibers Cs+ hyperpolarizes the membrane by stimulating the activity of the electrogenic Na+-K+ pump (and not by suppressing If); and blocks the pacemaker potential by blocking the undershoot, consistent with a Cs+ block of a potassium pacemaker current.  相似文献   

7.
Summary We have studied the kinetic properties of rabbit red cell (RRBC) Na+/Na+ and Na+/H+ exchanges (EXC) in order to define whether or not both transport functions are conducted by the same molecule. The strategy has been to determine the interactions of Na+ and H+ at the internal (i) and external (o) sites for both exchanges modes. RRBC containing varying Na i and H l were prepared by nystatin and DIDS treatment of acid-loaded cells. Na+/Na+ EXC was measured as Na o -stimulated Na+ efflux and Na+/H+ EXC as Na o -stimulated H+ efflux and pH o -stimulated Na+ influx into acid-loaded cells.The activation of Na+/Na+ EXC by Na o at pH i 7.4 did not follow simple hyperbolic kinetics. Testing of different kinetic models to obtain the best fit for the experimental data indicated the presence of high (K m 2.2 mM) and low affinity (K m 108 mM) sites for a single- or two-carrier system. The activation of Na+/H+ EXC by Na o (pH i 6.6, Na i <1 mM) also showed high (K m 11 mM) and low (K m 248 mM) affinity sites. External H+ competitively inhibited Na+/Na+ EXC at the low affinity Na o site (K H 52 nM) while internally H+ were competitive inhibitors (pK 6.7) at low Na i and allosteric activators (pK 7.0) at high Na i .Na+/H+ EXC was also inhibited by acid pH o and allosterically activated by H i (pK 6.4). We also established the presence of a Na i regulatory site which activates Na+/H+ and Na+/Na+ EXC modifying the affinity for Na o of both pathways. At low Na i , Na+/Na+ EXC was inhibited by acid pH i and Na+/H+ stimulated but at high Na i , Na+/Na+ EXC was stimulated and Na+/H+ inhibited being the sum of both pathways kept constant. Both exchange modes were activated by two classes of Na o sites,cis-inhibited by external H o , allosterically modified by the binding of H+ to a H i regulatory site and regulated by Na i . These findings are consistent with Na+/Na+ EXC being a mode of operation of the Na+/H+ exchanger.Na+/H+ EXC was partially inhibited (80–100%) by dimethyl-amiloride (DMA) but basal or pH i -stimulated Na+/Na+ EXC (pH i 6.5, Na i 80 mM) was completely insensitive indicating that Na+/Na+ EXC is an amiloride-insensitive component of Na+/H+ EXC. However, Na+ and H+ efflux into Na-free media were stimulated by cell acidification and also partially (10 to 40%) inhibited by DMA: this also indicates that the Na+/H+ EXC might operate in reverse or uncoupled modes in the absence of Na+/Na+ EXC.In summary, the observed kinetic properties can be explained by a model of Na+/H+ EXC with several conformational states, H i and Na i regulatory sites and loaded/unloaded internal and external transport sites at which Na+ and H+ can compete. The occupancy of the H+ regulatory site induces a conformational change and the occupancy of the Na i regulatory site modulates the flow through both pathways so that it will conduct Na+/H+ and/or Na+/Na+ EXC depending on the ratio of internal Na+:H+.  相似文献   

8.
The sequence of ionic changes involved in initiation of acrosomal exocytosis in capacitated mouse spermatozoa was investigated. Earlier studies demonstrated that a large influx of Na+ is required for exocytosis, this Na+ apparently being associated with an increase in intracellular pH (pHi) via an Na+-H+ exchanger. This rise in pHi may in turn activate calcium channels and permit the influx of extracellular Ca2+ needed to trigger acrosomal exocytosis. In the present study, the dihydropyridine voltage-dependent calcium channel antagonist nifedipine was able to inhibit significantly exocytosis in sperm cells treated in various ways capable of stimulating acrosomal loss. The monovalent cation ionophore monensin can promote Na+ entry required for both capacitation and acrosomal exocytosis, as demonstrated by using chlortetracycline to monitor changes in sperm functional potential. In the presence of 10 nM nifedipine, monensin treatment accelerated capacitation but was unable to trigger exocytosis. The requirement for internalization of a high concentration of Na+ can be bypassed by the addition of 25 mM NH4CI to raise the pHi of cells capacitated in 25NH4CI to raise the pHi of cells capacitated in 25 mM Na+ (insufficient Na+ to support exocytosis under usual conditions). Again, introduction of nifedipine was able to inhibit exocytosis. In a third experimental approach, amiloridestimulated exocytosis in capacitated cells was significantly inhibited by nifedipine. In contrast to these treatments directed at specific mechanisms, the ability of the Ca2+ inophore A23187 to promote more general entry of Ca2+ and thereby to accelerate capacitation and exocytosis was not inhibited by nifedipine. Finally, monensin-treated cells exhibited a rise and then a fall in 45Ca2+ uptake, the time course of which paralleled stimulation of acrosomal exocytosis in similarly treated cells. Nifedipine significantly reduced this uptake. The fact that nifedipine can block exocytosis induced by a variety treatments strongly suggests that voltage-dependent calcium channels play a pivotal role in the response. These results are consistent with the following sequence of ionic changes in capacitated cells leading to acrosomal exocytosis: [Na+]i ↑ → [H]i↓ → pHi ↑ → activation of calcium channels → [Ca2+]i ↑ → exocytosis. Given that zona-induced exocytosis is reportedly an indirect response, mediated by voltage-dependent calcium channels, and that the Na+-H+ exchanger in somatic cells can be activated by receptor-mediated mechanisms, we suggest that sperm-zona inter action promotes an influx of Na+ by activating an Na+-H+ exchanger and thereby initiating the above sequence of changes. © 1993 Wiley-Liss, Inc.  相似文献   

9.
The P2U purinergic agonist ATP (0.3 mM) elicited an increase in [Ca2+]i due to Ca2+ release from intracellular stores in transfected Chinese hamster ovary cells that express the bovine cardiac Na+/Ca2+ exchanger (CK1.4 cells). The following observations indicate that ATP-evoked Ca2+ release was accompanied by a Ca2+- dependent regulatory activation of Na+/Ca2+ exchange activity: Addition of extracellular Ca2+ (0.7 mM) 0–1 min after ATP evoked a dramatic rise in [Ca2+]i in Na+-free media (Li+ substitution) compared to Na+-containing media; no differences between Na+- and Li+-based media were observed with vector-transfected cells. In the presence of physiological concentrations of extracellular Na+ and Ca2+, the ATP-evoked rise in [Ca2+]i declined more rapidly in CK1.4 cells compared to control cells, but then attained a long-lived plateau of elevated [Ca2+]i which eventually came to exceed the declining [Ca2+]i values in control cells. ATP elicited a transient acceleration of exchange-mediated Ba2+ influx, consistent with regulatory activation of the Na+/Ca2+ exchanger. The acceleration of Ba2+ influx was not observed in vector-transfected control cells, or in CK1.4 cells in the absence of intracellular Na+ or when the Ca2+ content of the intracellular stores had been reduced by prior treatment with ionomycin. The protein kinase C activator phorbol 12-myristate 13-acetate attenuated the exchange-mediated rise in [Ca2+]i under Na+-free conditions, but did not inhibit the ATP-evoked stimulation of Ba2+ influx. The effects of PMA are therefore not due to inhibition of exchange activity, but probably reflect the influence of protein kinase C on other Ca2+ homeostatic mechanisms. We conclude that exchange activity is accelerated during ATP-evoked Ca2+ release from intracellular stores through regulatory activation by increased [Ca2+]i. In the absence of extracellular Ca2+, the stimulation of exchange activity is short-lived and follows the time course of the [Ca2+]i transient; in the presence of extracellular Ca2+, we suggest that the exchanger remains activated for a longer period of time, thereby stabilizing and prolonging the plateau phase of store-dependent Ca2+ entry.  相似文献   

10.
Summary Using the fluorescent probe fura-2, we measured the cytoplasmic concentration of free Ca2+ ([Ca] i ) and its changes in isolated, nonidentified neurons of the snailHelix pomatia. [Ca] i increased during membrane depolarization due to opening of Ca channels in the surface membrane. When the membrane potential returned to the resting level, [Ca] i recovered monoexponentially, with the time constant ranging from 10 to 30 sec. The rate of recovery remained unchanged after treatments that interferred with the normal functioning of both Ca/Na exchange and Ca-ATPase in the surface membrane or mitochondria. [Ca] i recovery slowed down upon cooling according to Q10=2.3 and after intracellular injection of vanadate. The data obtained suggest that the rate of [Ca] i recovery after membrane depolarization is mainly determined by Ca pump of intracellular stores (presumably by the endoplasmic reticulum). Ca release from these stores could be induced in the presence of millimolar caffeine or theophylline in the external medium when [Ca] i increased up to a certain threshold level. This depolarization-induced Ca load triggered further transient increase in [Ca] i , which was accompanied by membrane hyperpolarization due to the development of Ca-activated potassium conductance. 1mm procaine or tetracaine, but not lidocaine, inhibited this Ca-induced Ca release. In some cases stable oscillations of [Ca] i were observed. They could be induced by producing a steady Ca influx by membrane depolarization.  相似文献   

11.
Ca2+ has been recognized as a key molecule for chondrocytes, however, the role and mechanism of spontaneous [Ca 2+] i signaling in cartilaginous extracellular matrix (ECM) metabolism regulation are unclear. Here we found that spontaneous Ca 2+ signal of in-situ porcine chondrocytes was [Ca 2+] o dependent, and mediated by [Ca 2+] i store release. T-type voltage-dependent calcium channel (T-VDCC) mediated [Ca 2+] o influx was associated with decreased cell viability and expression levels of ECM deposition genes. Further analysis revealed that chondrocytes expressed both inositol 1,4,5-trisphosphate receptor (InsP3R) and Orai isoforms. Inhibition of endoplasmic reticulum (ER) Ca 2+ release and store-operated calcium entry significantly abolished spontaneous [Ca 2+] i signaling of in-situ chondrocytes. Moreover, blocking ER Ca 2+ release with InsP3R inhibitors significantly upregulated ECM degradation enzymes production, and was accompanied by decreased proteoglycan and collagen type II intensity. Taken together, our data provided evidence that spontaneous [Ca 2+] i signaling of in-situ porcine chondrocytes was tightly regulated by [Ca 2+] o influx, InsP3Rs mediated [Ca 2+] i store release, and Orais mediated calcium release-activated calcium channels activation. Both T-VDCC mediated [Ca 2+] o influx and InsP3Rs mediated ER Ca 2+ release were found crucial to cartilaginous ECM metabolism through distinct regulatory mechanisms.  相似文献   

12.
Sodium movements in the human red blood cell   总被引:19,自引:9,他引:10  
Measurements were made of the sodium outflux rate constant, o k Na, and sodium influx rate constant, i k Na, at varying concentrations of extracellular (Nao) and intracellular (Nac) sodium. o k Na increases with increasing [Nao] in the presence of extracellular potassium (Ko) and in solutions containing ouabain. In K-free solutions which do not contain ouabain, o k Na falls as [Nao] rises from 0 to 6 mM; above 6 mM, o k Na increases with increasing [Nao]. Part of the Na outflux which occurs in solutions free of Na and K disappears when the cells are starved or when the measurements are made in solutions containing ouabain. As [Nao] increases from 0 to 6 mM, i k Na decreases, suggesting that sites involved in the sodium influx are becoming saturated. As [Nac] increases, o k Na at first increases and then decreases; this relation between o k Na and [Nac] is found when the measurements are made in high Na, high K solutions; high Na, K-free solutions; and in (Na + K)-free solutions. The relation may be the consequence of the requirement that more than one Na ion must react with the transport mechanism at the inner surface of the membrane before transport occurs. Further evidence has been obtained that the ouabain-inhibited Na outflux and Na influx in K-free solutions represent an exchange of Nac for Nao via the Na-K pump mechanism.  相似文献   

13.
Hypoxia is a common denominator of many vascular disorders, especially those associated with ischemia. To study the effect of oxygen depletion on endothelium, we developed an in vitro model of hypoxia on human umbilical vein endothelial cells (HUVEC). Hypoxia strongly activates HUVEC, which then synthesize large amounts of prostaglandins and platelet‐activating factor. The first step of this activation is a decrease in ATP content of the cells, followed by an increase in the cytosolic calcium concentration ([Ca2+]i) which then activates the phospholipase A2 (PLA2). The link between the decrease in ATP and the increase in [Ca2+]i was not known and is investigated in this work. We first showed that the presence of extracellular Na+ was necessary to observe the hypoxia‐induced increase in [Ca2+]i and the activation of PLA2. This increase was not due to the release of Ca2+ from intracellular stores, since thapsigargin did not inhibit this process. The Na+/Ca2+ exchanger was involved since dichlorobenzamil inhibited the [Ca2+]i and the PLA2 activation. The glycolysis was activated, but the intracellular pH (pHi) in hypoxic cells did not differ from control cells. Finally, the hypoxia‐induced increase in [Ca2+]i and PLA2 activation were inhibited by phlorizin, an inhibitor of the Na+‐glucose cotransport. The proposed biochemical mechanism occurring under hypoxia is the following: glycolysis is first activated due to a requirement for ATP, leading to an influx of Na+ through the activated Na+‐glucose cotransport followed by the activation of the Na+/Ca2+ exchanger, resulting in a net influx of Ca2+. J. Cell. Biochem. 84: 115–131, 2002. © 2001 Wiley‐Liss, Inc.  相似文献   

14.
We examined Ba2+ influx using isotopic and fura-2 techniques in transfected Chinese hamster ovary cells expressing the bovine cardiac Na+/Ca2+ exchanger (CK1.4 cells). Ba2+ competitively inhibited exchange-me diated 45Ca2+ uptake with a K i ∼ 3 mM. Ba2+ uptake was stimulated by pretreating the cells with ouabain and by removing extracellular Na+, as expected for Na+/Ba2+ exchange activity. The maximal velocity of Ba2+ accumulation was estimated to be 50% of that for Ca2+. When the monovalent cation ionophore gramicidin was used to equilibrate internal and external concentrations of Na+, Ba2+ influx was negligible in the absence of Na+ and increased to a maximum at 20–40 mM Na+. At higher Na+ concentrations, Ba2+ influx declined, presumably due to the competition between Na+ and Ba2+ for transport sites on the exchanger. Unlike Ca2+, Ba2+ did not appear to be taken up by intracellular organelles: Thus, 133Ba2+ uptake in ouabain-treated cells was not reduced by mitochondrial inhibitors such as Cl-CCP or oligomycin-rotenone. Moreover, intracellular Ca2+ stores that had been depleted of Ca2+ by pretreatment of the cells with ionomycin (a Ca2+ ionophore) remained empty during a subsequent period of Ba2+ influx. Ca2+ uptake or release by intracellular organelles secondarily regulated exchange activity through alterations in [Ca2+]i. Exchange-mediated Ba2+ influx was inhibited when cytosolic [Ca2+] was reduced to 20 nM or less and was accelerated at cytosolic Ca2+ concentrations of 25–50 nM. We conclude that (a) Ba2+ substitutes for Ca2+ as a transport substrate for the exchanger, (b) cytosolic Ba2+ does not appear to be sequestered by intracellular organelles, and (c) exchange-mediated Ba2+ influx is accelerated by low concentrations of cytosolic Ca2+.  相似文献   

15.
Summary Suspensions of LLC-PK1 cells (a continuous epitheliod cell line with renal characteristics) are examined for mechanisms of intracellular pH regulation using the fluorescent probe BCECF. Initial experiments determine suitable calibration procedures for use of the BCECF fluorescent signal. They also determine that the cell suspension contains cells which (after 4 hr in suspension) have Na+ and K+ gradients comparable to those of cells in monolayer culture. The steady-state intracellular pH (7.05±0.01,n=5) of cells which have recovered in (pH 7.4) Na+-containing medium is not affected over several minutes by addition of 100 M amiloride or removal of extracellular Na+ (Na o + /H i + and Na i + /H o + exchange reactions are functionally inactive (compared to cellular buffering capacity). In contrast, Na o + /H i + exchange is activated by an increased cellular acid load. This activation may be observed directly either as a stimulation of net H+ efflux or net Na+ influx with decreasing intracellular pH. The extrapolation of this latter data suggests a set point of Na+/H+ exchange of approximately pH 7.0, consistent with the observed resting intracellular pH of approximately 7.05.  相似文献   

16.
Summary Giant axons from the marine annelidMyxicola infundibulum were internally dialyzed with solutions containing22Na ions as tracers of Na efflux. In experiments performed in Li-substituted seawater, Na efflux that is dependent on external Ca ion concentration, [Ca2+] o , was measured using dialysis to maintain [Na+] i at 100mm, which enhances the [Ca2+] o -dependent Na efflux component, (i.e., reverse-mode Na/Ca exchange). When dialysis fluid contained EGTA (1mm) to buffer the internal Ca concentration, [Ca2+] i , to desired levels, Na efflux lost its normal sensitivity to external calcium. The inhibition was not simply due to the Ca-chelating action of EGTA to produce insufficient [Ca2+] i to activate Na/Ca exchange. The addition of EGTA inhibited Ca o -dependent Na efflux even when a large enough excess of [Ca2+] i was present to saturate the EGTA and still produce elevated values of [Ca2+] i . Control experiments showed that these high values of [Ca2+] i resulted in normal Na/Ca exchange in the absence of EGTA. It is concluded that the presence of EGTA itself interferes with the manifestation of reverse-mode Na/Ca exchange inMyxicola giant axons.  相似文献   

17.
Inastrocytes, as [K+]o was increased from 1.2 to 10 mM, [K+]i and [Cl]i were increased, whereas [Na+]i was decreased. As [K+]o was increased from 10 to 60 mM, intracellular concentration of these three ions showed no significant change. When [K+]o was increased from 60 to 122 mM, an increase in [K+]i and [Cl]i and a decrease in [Na+]i were observed.Inneurons, as [K+]o was increased from 1.2 to 2.8 mM, [Na+]i and [Cl]i were decreased, whereas [K+]i was increased. As [K+]o was increased from 2.8 to 30 mM, [K+]i, [Na+]i and [Cl]i showed no significant change. When [K+]o was increased from 30 to 122 mM, [K+]i and [Cl]i were increased, whereas [Na+]i was decreased. Inastrocytes, pHi increased when [K+]o was increased. Inneurons, there was a biphasic change in pHi. In lower [K+]o (1.2–2.8 mM) pHi decreased as [K+]o increased, whereas in higher [K+]o (2.8–122 mM) pHi was directly related to [K+]o. In bothastrocytes andneurons, changes in [K+]o did not affect the extracellular water content, whereas the intracellular water content increased as the [K+]o increased. Transmembrane potential (Em) as measured with Tl-204 was inversely related to [K+]o between 1.2 and 90 mM, a ten-fold increase in [K+]o depolarized the astrocytes by about 56 mV and the neurons about 52 mV. The Em values measured with Tl-204 were close to the potassium equilibrium potential (Ek) except those in neurons at lower [K+]o. However, they were not equal to the chloride equilibrium potential (ECl) at [K+]o lower than 30 mM in both astrocytes and neurons. Results of this study demonstrate that alteration of [K+]o produced different changes in [K+]i, [Na+]i, [Cl]i, and pHi in astrocytes and neurons. The data show that astrocytes can adapt to alterations in [K+]o, in such a way to maintain a more suitable environment for neurons.  相似文献   

18.
Summary The dependence of cytoplasmic free [Ca] (Ca i ) on [Na] and pH was assessed in individual parietal cells of intact rabbit gastric glands by microfluorimetry of fura-2. Lowering extracellular [Na] (Na o ) to 20mm or below caused a biphasic Ca i increase which consisted of both release of intracellular Ca stores and Ca entry across the plasma membrane. The Ca increase was not blocked by antagonists of Ca-mobilizing receptors (atropine or cimetidine) and was independent of the replacement cation. Experiments in Ca-free media and in Na-depleted cells indicated that neither phase was due to reversal of Na/Ca exchange. The steep dependence of the Ca i increase on Na o suggested that the response was not due to lowering intracellular [Na] (Na i ). The effects of low Na o on Ca i were also completely independent of changes in intracellular pH (pH i ). Ca i was remarkably stable during changes of pH i of up to 2 pH units, indicating that H and Ca do not share a cytoplasmic buffer system. Such large pH excursions required determination of the pH dependence of fura-2. Because fura-2 was found to decrease its affinity for Ca as pH decreased below 6.7, corrections were applied to experiments in which large pH i changes were observed. In contrast to the relative insensitivity of Ca i to changes in pH i , decreasing extracellular pH (pH o ) to 6.0 or below was found to stimulate release of intracellular Ca stores. Increased Ca entry was not observed in this case. The ability of decreases in Na o and pH o to stimulate release of intracellular Ca stores suggest interactions between Na and H with extracellular receptors.  相似文献   

19.
The role of sodium and calcium on strophanthidin inotropy was studied in canine cardiac Purkinje fibers perfused in vitro under conditions that vary cellular sodium and calcium. With high concentrations of strophanthidin (greater than or equal to 10(-7) M), force increases more in the presence of low [Ca]0 or high [Na]0 and less in the presence of a low sodium-calcium concentration solution than in Tyrode solution. In a solution with a low concentration of sodium-calcium containing strophanthidin, restoring [Na]0 to normal decreases and then re-increases force: when [Na]0 is decreased again, the force transiently overshoots. These effects of strophanthidin are exaggerated by metabolic inhibitors. In a low [Ca] solution, low concentrations of strophanthidin (3 X 10(-8) or 5 X 10(-8) M) re-increase force a little or not at all. On recovery, the transient force increase is not exaggerated by low strophanthidin and is absent after manganese exposure. The inotropy of low concentrations of strophanthidin is potentiated by norepinephrine, high [Ca]0 (4 mM), or by lowering [Na]0. Thus, the present results suggest that the inotropic action of high strophanthidin concentrations depends primarily on sodium and secondarily on calcium, and that the inotropic action of low concentrations of strophanthidin involves a modification of the cell response to calcium.  相似文献   

20.
H E Statham  C J Duncan 《Life sciences》1977,20(11):1839-1845
MEPP frequency at the frog neuromuscular junction maintained in saline with normal [K]o was insensitive to reductions in [Na]o at 130°C. However, at 23°C, decreasing [Na]o causes a progressive rise in MEPP frequency; there is an approximately linear relationship between log [Na]o and the rate of spontaneous release. The effect of reducing [Na]o is dependent on [Ca]o; thus MEPP frequency is unaffected, even at 23°C, by changes in [Na]o when [Ca]o is reduced to the low level of 5 × 10?7M. It is suggested that: (i) MEPP frequency is determined by [Ca]i at the presynaptic terminals (ii) Reductions in [Na]o cause an increase in Ca-influx. At 13°C the presynaptic terminals are able to maintain [Ca]i constant when challenged whereas, at 23°C, there is a mobilization of Ca from intracellular storage sites and under these conditions [Ca]i is not maintained constant in the face of a rise in Ca-influx (associated with a reduction in [Na]o) and MEPP frequency consequently rises. The ways in which both extracellular and intracellular Na affect [Ca]i and MEPP frequency are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号