首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Euglenozoa is a major phylum of excavate protozoa (comprising euglenoids, kinetoplastids, and diplonemids) with highly unusual nuclear, mitochondrial, and chloroplast genomes. To improve understanding of euglenozoan evolution, we sequenced nuclear small-subunit rRNA genes from 34 bodonids (Bodo, Neobodo, Parabodo, Dimastigella-like, Rhynchobodo, Rhynchomonas, and unidentified strains), nine diplonemids (Diplonema, Rhynchopus), and a euglenoid (Entosiphon). Phylogenetic analysis reveals that diplonemids and bodonids are more diverse than previously recognised, but does not clearly establish the branching order of kinetoplastids, euglenoids, and diplonemids. Rhynchopus is holophyletic; parasitic species arose from within free-living species. Kinetoplastea (bodonids and trypanosomatids) are robustly holophyletic and comprise a major clade including all trypanosomatids and most bodonids ('core bodonids') and a very divergent minor one including Ichthyobodo. The root of the major kinetoplastid clade is probably between trypanosomatids and core bodonids. Core bodonids have three distinct subclades. Clade 1 has two distinct Rhynchobodo-like lineages; a lineage comprising Dimastigella and Rhynchomonas; and another including Cruzella and Neobodo. Clade 2 comprises Cryptobia/ Trypanoplasma, Procryptobia, and Parabodo. Clade 3 is an extensive Bodo saltans species complex. Neobodo designis is a vast genetically divergent species complex with mutually exclusive marine and freshwater subclades. Our analysis supports three phagotrophic euglenoid orders: Petalomonadida (holophyletic), Ploeotiida (probably holophyletic), Peranemida (paraphyletic).  相似文献   

2.
Busse I  Preisfeld A 《Gene》2002,284(1-2):83-91
The taxa Rhynchopus Skuja and Diplonema Griessmann were first described as remarkable protists with euglenid affinities. Later on, the placement of Diplonema within the Euglenozoa was confirmed by molecular data. For this study two new sequences were added to the euglenozoan data set. The uncertainly placed Rhynchopus can be identified as a close relative to Diplonema by small subunit ribosomal DNA (SSU rDNA) analysis. The new sequence of Diplonema ambulator is in close relationship to two other Diplonema species. Our molecular analyses clearly support the monophyly of the diplonemids comprising Rhynchopus and Diplonema. Yet the topology at the base of the euglenozoan tree remains unresolved, and especially the monophyly of the euglenids is arguable. SSU rDNA sequence analyses suggest that significantly different GC contents, high mutational saturation in the euglenids, and different evolutionary rates in the euglenozoan clades make it difficult to identify any sister group to the diplonemids.  相似文献   

3.
Molecular phylogenies of euglenids are usually based on ribosomal RNA genes that do not resolve the branching order among the deeper lineages. We addressed deep euglenid phylogeny using the cytosolic form of the heat-shock protein 90 gene (hsp90), which has already been employed with some success in other groups of euglenozoans and eukaryotes in general. Hsp90 sequences were generated from three taxa of euglenids representing different degrees of ultrastructural complexity, namely Petalomonas cantuscygni and wild isolates of Entosiphon sulcatum, and Peranema trichophorum. The hsp90 gene sequence of P. trichophorum contained three short introns (ranging from 27 to 31 bp), two of which had non-canonical borders GG-GG and GG-TG and two 10-bp inverted repeats, suggesting a structure similar to that of the non-canonical introns described in Euglena gracilis. Phylogenetic analyses confirmed a closer relationship between kinetoplastids and diplonemids than to euglenids, and supported previous views regarding the branching order among primarily bacteriovorous, primarily eukaryovorous, and photosynthetic euglenids. The position of P. cantuscygni within Euglenozoa, as well as the relative support for the nodes including it were strongly dependent on outgroup selection. The results were most consistent when the jakobid Reclinomonas americana was used as the outgroup. The most robust phylogenies place P. cantuscygni as the most basal branch within the euglenid clade. However, the presence of a kinetoplast-like mitochondrial inclusion in P. cantuscygni deviates from the currently accepted apomorphy-based definition of the kinetoplastid clade and highlights the necessity of detailed studies addressing the molecular nature of the euglenid and diplonemid mitochondrial genome.  相似文献   

4.
Despite extensive phylogenetic analysis of small subunit ribosomal RNA (SSUrRNA) genes, the deep-level relationships among kinetoplastids remain poorly understood, limiting our grasp of their evolutionary history, especially the origins of their bizarre mitochondrial genome organizations. In this study we examine the SSUrRNA data in the light of a new marker--cytoplasmic heat shock protein 90 (hsp90) sequences. Our phylogenetic analyses divide kinetoplastids into four main clades. Clades 1-3 include the various bodonid kinetoplastids. Trypanosomatids comprise the fourth clade. SSUrRNA analyses give vastly different and poorly supported positions for the root of the kinetoplastid tree, depending on the out-group and analysis method. This is probably due to the extraordinary length of the branch between kinetoplastids and any out-group. In contrast, almost all hsp90 analyses place the root between clade 1 (including Dimastigella, Rhynchomonas, several Bodo spp., and probably Rhynchobodo) and all other kinetoplastids. Maximum likelihood and maximum likelihood distance analyses of hsp90 protein and second codon-position nucleotides place trypanosomatids adjacent to Bodo saltans and Bodo cf. uncinatus (clade 3), as (weakly) do SSUrRNA analyses. Hsp90 first codon- plus second codon-position nucleotide analyses return a slightly different topology. We show that this may be an artifact caused, in part, by the different evolutionary behavior of first- and second-codon positions. This study provides the most robust evidence to date that trypanosomatids are descended from within bodonids and that B. saltans is a close relative of trypanosomatids. A total reevaluation of the high-level systematics within kinetoplastids is needed. We confirm that the interlocking network organization of kinetoplast DNA seen in trypanosomatids is a derived condition within kinetoplastids but suggest that open-conformation minicircles may have arisen early in kinetoplastid evolution. Further understanding of the evolution of kinetoplast structure and RNA editing is hampered by a paucity of data from basal (i.e., clade 1) bodonids.  相似文献   

5.
Maslov DA  Yasuhira S  Simpson L 《Protist》1999,150(1):33-42
In order to shed light on the phylogenetic position of diplonemids within the phylum Euglenozoa, we have sequenced small subunit rRNA (SSU rRNA) genes from Diplonema (syn. Isonema) papillatum and Diplonema sp. We have also analyzed a partial sequence of the mitochondrial gene for cytochrome c oxidase subunit I from D. papillatum. With both markers, the maximum likelihood method favored a closer grouping of diplonemids with kinetoplastids, while the parsimony and distance suggested a closer relationship of diplonemids with euglenoids. In each case, the differences between the best tree and the alternative trees were small. The frequency of codon usage in the partial D. papillatum COI was different from both related groups; however, as is the case in kinetoplastids but not in Euglena, both the non-canonical UGA codon and the canonical UGG codon were used to encode tryptophan in Diplonema.  相似文献   

6.
Makiuchi T  Annoura T  Hashimoto T  Murata E  Aoki T  Nara T 《Protist》2008,159(3):459-470
A unique feature of the genome architecture in the parasitic trypanosomatid protists is large-scale synteny. We addressed the evolutionary trait of synteny in the eukaryotic group, Euglenozoa, which consists of euglenoids (earliest branching), diplonemids, and kinetoplastids (trypanosomatids and bodonids). Synteny of the pyrimidine biosynthetic (pyr) gene cluster, which constitutes part of a large syntenic cluster in trypanosomatids and includes four separate genes (pyr1-pyr4) and one fused gene (pyr6/pyr5 fusion), was conserved in the bodonid, Parabodo caudatus. In the diplonemid, Diplonema papillatum, we identified pyr4 and pyr6 genes. Phylogenetic analyses of pyr4 and pyr6 showed the separate origin of each in kinetoplastids and euglenoids/diplonemids and suggested that kinetoplastids have acquired these genes via lateral gene transfer (LGT). Because replacement of genes by non-orthologs within the syntenic cluster is highly unlikely, we concluded that, after separation of the line leading to diplonemids, the syntenic pyr gene cluster was established in the common ancestor of kinetoplastids, preceded by their acquisition via LGT. Notably, we found that diplonemid pyr6 is a stand-alone gene, inconsistent with both euglenoid pyr5/pyr6 and kinetoplastid pyr6/pyr5 fusions. Our findings provide insights into the evolutionary gaps within Euglenozoa and the evolutionary trait of rearrangement of gene fusion in this lineage.  相似文献   

7.

Background  

The Euglenozoa is a large group of eukaryotic flagellates with diverse modes of nutrition. The group consists of three main subclades - euglenids, kinetoplastids and diplonemids - that have been confirmed with both molecular phylogenetic analyses and a combination of shared ultrastructural characteristics. Several poorly understood lineages of putative euglenozoans live in anoxic environments, such as Calkinsia aureus, and have yet to be characterized at the molecular and ultrastructural levels. Improved understanding of these lineages is expected to shed considerable light onto the ultrastructure of prokaryote-eukaryote symbioses and the associated cellular innovations found within the Euglenozoa and beyond.  相似文献   

8.
Marande W  Lukes J  Burger G 《Eukaryotic cell》2005,4(6):1137-1146
Kinetoplastid flagellates are characterized by uniquely massed mitochondrial DNAs (mtDNAs), the kinetoplasts. Kinetoplastids of the trypanosomatid group possess two types of mtDNA molecules: maxicircles bearing protein and mitoribosomal genes and minicircles specifying guide RNAs, which mediate uridine insertion/deletion RNA editing. These circles are interlocked with one another to form dense networks. Whether these peculiar mtDNA features are restricted to kinetoplastids or prevail throughout Euglenozoa (euglenids, diplonemids, and kinetoplastids) is unknown. Here, we describe the mitochondrial genome and the mitochondrial ultrastructure of Diplonema papillatum, a member of the diplonemid flagellates, the sister group of kinetoplastids. Fluorescence and electron microscopy show a single mitochondrion per cell with an ultrastructure atypical for Euglenozoa. In addition, DNA is evenly distributed throughout the organelle rather than compacted. Molecular and electron microscopy studies distinguish numerous 6- and 7-kbp-sized mitochondrial chromosomes of monomeric circular topology and relaxed conformation in vivo. Remarkably, the cox1 gene (and probably other mitochondrial genes) is fragmented, with separate gene pieces encoded on different chromosomes. Generation of the contiguous cox1 mRNA requires trans-splicing, the precise mechanism of which remains to be determined. Taken together, the mitochondrial gene/genome structure of Diplonema is not only different from that of kinetoplastids but unique among eukaryotes as a whole.  相似文献   

9.
Emergent flagella of Euglenozoa consist of two prominent structural elements: the axoneme built by microtubules with motor proteins to enable the movement of the flagellum and a highly organized protein structure of unknown function, called the paraxonemal rod (PAR), which consists of two major proteins paralleling the axoneme of euglenid and kinetoplastid emergent flagella. These flagellar structures are considered apomorphic characters of Euglenozoa. We examined the evolution of the genes par1 and par2 encoding the two major proteins, where we could show that these proteins are encoded by two very similar genes found in kinetoplastids and euglenids. The branching pattern indicated a gene duplication before the diversification into euglenids and kinetoplastids. In the clades of the genes, subtrees of euglenid and kinetoplastid monophyla arose. Both genes showed strong genetic diversity with biased GC content at taxon rather than at gene level. We also examined phylogenies inferred from PAR genes that are well in agreement with established small subunit rDNA analyses. Both showed further separation of the euglenid subtree into primary osmotrophs and a phototrophic clade, including secondarily derived osmotrophs.  相似文献   

10.
Many important relationships amongst kinetoplastids, including the position of trypanosomatids, remain uncertain, with limited taxon sampling of markers other than small subunit ribosomal RNA (SSUrRNA). We report gene sequences for cytosolic heat shock proteins 90 and/or 70 (HSP90, HSP70) from the potentially early-diverging kinetoplastids Ichthyobodo necator and Rhynchobodo sp., and from bodonid clades ‘2’ (Parabodonidae) and ‘3’ (Eubodonidae). Some of the new cytosolic HSP70 sequences represent a distinct paralog family (HSP70-B), which is related to yet another paralog known from trypanosomatids (HSP70-C). The (HSP70-B, HSP70-C) clade seemingly diverged before the separation between kinetoplastids and diplonemids. Protein phylogenies support the basal placement of Ichthyobodo within kinetoplastids. Unexpectedly, Rhynchobodo usually forms the next most basal group, separated from the clade ‘1’ bodonids with which it has been allied. Bootstrap support is often weak, but the possibility that Rhynchobodo represents a separate early-diverging lineage within core kinetoplastids deserves further testing. Trypanosomatids always fall remote from the root of kinetoplastids, forming a specific relationship with bodonid clades 2 (and 3), generally with strong bootstrap support. These protein trees with improved taxon sampling provide the best evidence to date for a ‘late’ emergence of trypanosomatids, contradicting recent SSUrRNA-based proposals for a relatively early divergence of this group.  相似文献   

11.
Diplomonads, such as Giardia, and their close relatives retortamonads have been proposed as early-branching eukaryotes that diverged before the acquisition-retention of mitochondria, and they have become key organisms in attempts to understand the evolution of eukaryotic cells. In this phylogenetic study we focus on a series of eukaryotes suggested to be relatives of diplomonads on morphological grounds, the "excavate taxa". Phylogenies of small subunit ribosomal RNA (SSU rRNA) genes, alpha-tubulin, beta-tubulin, and combined alpha- + beta-tubulin all scatter the various excavate taxa across the diversity of eukaryotes. But all phylogenies place the excavate taxon Carpediemonas as the closest relative of diplomonads (and, where data are available, retortamonads). This novel relationship is recovered across phylogenetic methods and across various taxon-deletion experiments. Statistical support is strongest under maximum-likelihood (ML) (when among-site rate variation is modeled) and when the most divergent diplomonad sequences are excluded, suggesting a true relationship rather than an artifact of long-branch attraction. When all diplomonads are excluded, our ML SSU rRNA tree actually places retortamonads and Carpediemonas away from the base of the eukaryotes. The branches separating excavate taxa are mostly not well supported (especially in analyses of SSU rRNA data). Statistical tests of the SSU rRNA data, including an "expected likelihood weights" approach, do not reject trees where excavate taxa are constrained to be a clade (with or without parabasalids and Euglenozoa). Although diplomonads and retortamonads lack any mitochondria-like organelle, Carpediemonas contains double membrane-bounded structures physically resembling hydrogenosomes. The phylogenetic position of Carpediemonas suggests that it will be valuable in interpreting the evolutionary significance of many molecular and cellular peculiarities of diplomonads.  相似文献   

12.
13.
When a cell encounters external stressors, such as lack of nutrients, elevated temperatures, changes in pH or other stressful environments, a key set of evolutionarily conserved proteins, the heat shock proteins (hsps), become overexpressed. Hsps are classified into six major families with the hsp90 family being the best understood; an increase in cell stress leads to increased levels of hsp90, which leads to cellular protection. A hallmark of hsp90 inhibitors is that they induce a cell rescue mechanism, the heat shock response. We define the unique molecular profile of a compound (SM145) that regulates hormone receptor protein levels through hsp90 inhibition without inducing the heat shock response. Modulation of the binding event between heat shock protein 90 and the immunophilins/homologs using SM145, leads to a decrease in hormone receptor protein levels. Unlike N-terminal hsp90 inhibitors, this hsp90 inhibitor does not induce a heat shock response. This work is proof of principle that controlling hormone receptor expression can occur by inhibiting hsp90 without inducing pro-survival protein heat shock protein 70 (hsp70) or other proteins associated with the heat shock response. Innovatively, we show that blocking the heat shock response, in addition to hsp90, is key to regulating hsp90-associated pathways.  相似文献   

14.
Molecular studies based on small subunit (SSU) rDNA sequences addressing euglenid phylogeny hitherto suffered from the lack of available data about phagotrophic species. To extend the taxon sampling, SSU rRNA genes from species of seven genera of phagotrophic euglenids were investigated. Sequence analyses revealed an increasing genetic diversity among euglenid SSU rDNA sequences compared with other well‐known eukaryotic groups, reflecting an equally broad diversity of morphological characters among euglenid phagotrophs. Phylogenetic inference using standard parsimony and likelihood approaches as well as Bayesian inference and spectral analyses revealed no clear support for euglenid monophyly. Among phagotrophs, monophyly of Petalomonas cantuscygni and Notosolenus ostium, both comprising simple ingestion apparatuses, is strongly supported. A moderately supported clade comprises phototrophic euglenids and primary osmotrophic euglenids together with phagotrophs, exhibiting a primarily flexible pellicle composed of numerous helically arranged strips and a complex ingestion apparatus with two supporting rods and four curved vanes. Comparison of molecular and morphological data is used to demonstrate the difficulties to formulate a hypothesis about how the ingestion apparatus evolved in this group.  相似文献   

15.
18S rRNA genes (SSU rDNA) of five newly sequenced species were used as molecular markers to infer phylogenetic relationships within the euglenoids. Two members of the order Euglenales ( Lepocinclis ovata Playfair , Phacus similis Christen), two of the order Eutreptiales ( Distigma proteus Ehrenberg, , D. curvata Pringsheim) and Gyropaigne lefévrei Bourelly et Georges of the order Rhabdomonadales were used in parsimony, maximum likelihood, and distance analyses. All trees derived from SSU rRNA data strongly supported the monophyletic origin of the Euglenozoa, with kinetoplastids as sister clade to the euglenoids and Petalomonas cantuscygni Cann et Pennick diverging at the base of the monophyletic euglenoid lineage. The data also supported the theory that phagotrophic euglenoids arose prior to osmotrophs and phototrophs. A lineage of Peranema trichophorum Ehrenberg and all sequenced Euglenales formed a sister clade to the osmotrophs. This suggests that the evolution of phototrophy within the euglenoids radiated from a single event.  相似文献   

16.
17.
The small subunit rRNA (SSU rRNA) coding regions sequenced from the euglenoids Petalomonas cantuscygni, Peranema trichophorum, and Khawkinea quartana were used to assess the phylogenetic relationships of these genera within the Euglenozoa. Phylogenies derived from distance, parsimony, and maximum likelihood methods infer that the euglenoids and kinetoplastids form sister clades within a monophyletic assemblage. Distances representative of closely related lineages separate the genera within the Kinetoplastida, whereas larger distance values separate genera within the euglenoid assemblage. The results of the morphological and molecular studies suggest that phagotrophy arose early in the euglenozoan lineage with the subsequent acquisition of phototrophy, osmotrophy, and parasitism. Phagotrophic euglenoids with a pellicle composed of longitudinal strips appear to have diverged prior to genera with helically arranged strips. This study suggests that the hypothetical ancestor to the Euglenozoa was a phagotroph with two flagella, both containing paraxonemal rods. Furthermore, its basal bodies contained proximal cartwheels, were connected by a prominent fiber, and were anchored with three asymmetrically arranged flagellar roots.  相似文献   

18.
19.
20.
Glycosomes are peroxisome-related organelles containing glycolytic enzymes that have been found only in kinetoplastids. We show here that a glycolytic enzyme is compartmentalized in diplonemids, the sister group of kinetoplastids. We found that, similar to kinetoplastid aldolases, the fructose 1,6-bisphosphate aldolase of Diplonema papillatum possesses a type 2-peroxisomal targeting signal. Western blotting showed that this aldolase was present predominantly in the membrane/organellar fraction. Immunofluorescence analysis showed that this aldolase had a scattered distribution in the cytosol, suggesting its compartmentalization. In contrast, orotidine-5'-monophosphate decarboxylase, a non-glycolytic glycosomal enzyme in kinetoplastids, was shown to be a cytosolic enzyme in D. papillatum. Since euglenoids, the earliest diverging branch of Euglenozoa, do not possess glycolytic compartments, these findings suggest that the routing of glycolytic enzymes into peroxisomes may have occurred in a common ancestor of diplonemids and kinetoplastids, followed by diversification of these newly established organelles in each of these euglenozoan lineages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号