首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The two model yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe appear to have diverged 1000 million years ago. Here, we describe that S.?pombe vectors can be propagated efficiently in S.?cerevisiae as pUR19 derivatives, and the pREP and pJR vector series carrying the S.?cerevisiae LEU2 or the S.?pombe ura4(+) selection marker are maintained in S.?cerevisiae cells. In addition, genes transcribed from the S.?pombe nmt1(+) promoter and derivatives are expressed in budding yeast. Thus, S.?pombe vectors can be used as shuttle vectors in S.?cerevisiae and S.?pombe. Our finding greatly facilitates the testing for functional orthologs of protein families and simplifies the cloning of new S.?pombe plasmids by using the highly efficient in vivo homologous recombination activity of S.?cerevisiae.  相似文献   

3.
High copy number nuclear plasmids are becoming recognized as common genetic components of simple eukaryotes. Like bacterial plasmids, eukaryotic plasmids ensure their persistence in dividing cells by having a partitioning system and a regulated means of amplifying copy number to correct inherent fluctuations in partitioning. By virtue of their small size and autonomy from the chromosomes, eukaryotic plasmids are useful for studying not only features of eukaryotic replicons but many aspects of gene regulation and DNA organization in nucleated cells.  相似文献   

4.
5.
The [URE3] prion (infectious protein) of yeast is a self-propagating, altered form of Ure2p that cannot carry out its normal function in nitrogen regulation. Previous data have shown that Ure2p can form protease-resistant amyloid filaments in vitro, and that it is aggregated in cells carrying the [URE3] prion. Here we show by electron microscopy that [URE3] cells overexpressing Ure2p contain distinctive, filamentous networks in their cytoplasm, and demonstrate by immunolabeling that these networks contain Ure2p. In contrast, overexpressing wild-type cells show a variety of Ure2p distributions: usually, the protein is dispersed sparsely throughout the cytoplasm, although occasionally it is found in multiple small, focal aggregates. However, these distributions do not resemble the single, large networks seen in [URE3] cells, nor do the control cells exhibit cytoplasmic filaments. In [URE3] cell extracts, Ure2p is present in aggregates that are only partially solubilized by boiling in SDS and urea. In these aggregates, the NH(2)-terminal prion domain is inaccessible to antibodies, whereas the COOH-terminal nitrogen regulation domain is accessible. This finding is consistent with the proposal that the prion domains stack to form the filament backbone, which is surrounded by the COOH-terminal domains. These observations support and further specify the concept of the [URE3] prion as a self-propagating amyloid.  相似文献   

6.
Analysis of the plasmid containing clones of transformants of Saccharomyces cerevisiae in the population cultivated under the nonselective conditions has shown their vast heterogeneity in the mitotic stability of the plasmids Yep13 and Yep91. For instance, the clones were obtained with the different types of the hereditary plasmid stabilization: integration with the chromosome and genotype or plasmid mutations increasing the vector copy number. The increased expression level was registered in the mutants for the heterologous genes AmpR of Escherichia coli and HBsAg of hepatitis B. The clones were found with the considerably varying mitotic stability of the plasmids of the modification type variability, the latter expressing the fluctuations of plasmid copy number at the change of cultivation conditions.  相似文献   

7.
8.
Protoplasts of Saccharomyces cerevisiae were mixed with linear DNA plasmids, pGKl1 and pGKl2, isolated from a Kluyveromyces lactis killer strain and treated with polyethylene glycol. Out of 2,000 colonies regenerated on a nonselective medium, two killer transformants were obtained. The pGKl plasmids and the killer character were stably maintained in one (Pdh-1) of them. Another transformant, Pdl-1, was a weak killer, and the subclones consisted of a mixture of weak and nonkiller cells. The weak killers were characterized by the presence of pGKl1 in a decreased amount, and nonkillers were characterized by the absence of pGKl1. The occurrence of two new plasmids which migrated faster than pGKl1 in an agarose gel was observed in Pdl-1 and its subclones, whether weak or nonkillers. Staining with 4',6-diamidino-2-phenylindole revealed that the pGKl plasmids exist in the cytosol of transformant cells with numerous copy numbers.  相似文献   

9.
10.
11.
12.
13.
M C Wright  P Philippsen 《Gene》1991,109(1):99-105
We have developed a transformation system for the filamentous ascomycete fungus Ashbya gossypii. Mycelial protoplasts were transformed to geneticin-resistance with plasmids containing the Escherichia coli kanamycin-resistance gene as a selectable marker and autonomously replicating sequences (ARS) from Saccharomyces cerevisiae (ARS1, 2 mu ARS). Transformation frequencies of up to 63 transformants per microgram of plasmid DNA were obtained. The transformants were unstable under nonselective conditions. Southern analysis of DNA separated by conventional and pulsed-field-gel electrophoresis showed that the transforming DNA was present as autonomously replicating plasmid. Plasmid integration into chromosomal DNA was not detected. We concluded that the S. cerevisiae ARS elements are functional in A. gossypii, since vectors lacking such elements did not yield transformants.  相似文献   

14.
15.
A FITC-dextran internalization assay with Saccharomyces cerevisiae as positive control was used to determine whether fluid-phase endocytosis is a general characteristic of yeasts. Schizosaccharomyces pombe, Pichia polymorpha, Kluyveromyces phaseolosporus, Yarrowia lipolytica and Candida albicans were clearly positive, whereas results obtained with Debaryomyces marama were inconclusive. In all cases internalized FITC-dextran was found to be localized in the vacuoles and the process was always time- and temperature-dependent. Lower eucaryotes, particularly yeasts, appear to have the ability to incorporate substances from the extracellular medium through fluid-phase endocytosis.  相似文献   

16.
Two sets of plasmids, each carrying a Saccharomyces cerevisiae gene and a portion or all of the yeast 2-micron circle linked to the Escherichia coli plasmid pBR322, have been constructed. One of these sets contains a BamHI fragment of S. cerevisiae deoxyribonucleic acid that includes the yeast his3 gene, whereas the other set contains a BamHI fragment of S. cerevisiae that includes the yeast leu2 gene. All plasmids transform S. cerevisiae and E. coli with a high frequency, possess unique restriction endonuclease sites, and are retrievable from both host organisms. Plasmids carrying the 2.4-megadalton EcoRI fragment of the 2-micron circle transform yeast with 2- to 10-fold greater frequency than those carrying the 1.5-megadalton EcoRI fragment of the 2-micron circle. Restriction endonuclease analysis of plasmics retrieved from S. cerevisiae transformed with plasmics carrying the 2.4-megadalton EcoRI fragment showed that in 13 of 96 cases the original plasmic has acquired an additional copy of the 2-mcron circle. These altered plasmids appear to have arisen by means of an interplasmid recombination event while in S. cerevisiae. A clone bank of S. cerevisiae genes based upon one of these composite plasmids has been constructed. By using this bank and selecting directly in S. cerevisiae, the ura3, tyr1, and met2 genes have been cloned.  相似文献   

17.
18.
19.
20.
Linear plasmids were constructed by adding telomeres prepared from Tetrahymena pyriformis rDNA to a circular hybrid Escherichia coli-yeast vector and transforming Saccharomyces cerevisiae. The parental vector contained the entire 2 mu yeast circle and the LEU gene from S. cerevisiae. Three transformed clones were shown to contain linear plasmids which were characterized by restriction analysis and shown to be rearranged versions of the desired linear plasmids. The plasmids obtained were imperfect palindromes: part of the parental vector was present in duplicated form, part as unique sequences and part was absent. The sequences that had been lost included a large portion of the 2 mu circle. The telomeres were approximately 450 bp longer than those of T. pyriformis. DNA prepared from transformed S. cerevisiae clones was used to transform Schizosaccharomyces pombe. The transformed S. pombe clones contained linear plasmids identical in structure to their linear parents in S. cerevisiae. No structural re-arrangements or integration into S. pombe was observed. Little or no telomere growth had occurred after transfer from S. cerevisiae to S. pombe. A model is proposed to explain the genesis of the plasmids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号