首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract: Laminin A, B1, and B2 chain mRNA levels in degenerating and regenerating mouse sciatic nerves were examined using northern blot analysis. In normal intact nerves, B1 and B2 mRNA steady-state levels were high, but when the nerves were crushed, the steady-state levels of B1 and B2 mRNA per milligram wet tissue weight of the distal segments of the nerves increased five- to eightfold over that of control levels as the total RNA and β-actin mRNA levels increased, suggesting that these increases were the consequence of Schwann cell proliferation after axotomy. When the steady-state levels of B1 and B2 mRNA were normalized as the ratio to total RNA or β-actin mRNA levels, however, they drastically decreased to about 20% of the normal nerve levels in the nerve segments distal to both the crush and transaction sites 1 day after injury. In the crushed nerves, B1 and B2 mRNA levels gradually increased as the regenerating nerves arrived at the distal segments and reestablished normal axon–Schwann cell contact, and then returned to normal levels on the 21 st day. In the transected nerves, where Schwann cells continued to be disconnected from axons, both B1 and B2 mRNA levels remained low. Cultured Schwann cells expressed detectable levels of B1 and B2 chain mRNA which significantly increased when the cells were cocultured with sensory neurons. However, mRNA for A chain was not detectable in the normal, axotomized nerves or in cultured Schwann cells. These data indicate that Schwann cells express laminin B1 and B2 chain mRNA that are up-regulated by axonal or neuronal contact, but they do not express A chain mRNA.  相似文献   

2.
Anchoring functions of collagen VII depend on its ability to form homotypic fibrils and to bind to other macromolecules to form heterotypic complexes. Biosensor-based binding assays were employed to analyze the kinetics of the NC1 domain-mediated binding of collagen VII to laminin 5, collagen IV, and collagen I. We showed that collagen VII interacts with laminin 5 and collagen IV with a Kd value of 10(-9) M. In contrast, the NC1-mediated binding to collagen I was weak with a Kd value of 10(-6) M. Binding assays also showed that the NC1 domain utilizes the same region to bind to both laminin 5 and collagen IV. We postulate that the ability of the NC1 domains to bind with high affinities to laminin 5 and collagen IV facilitates stabilization of the structure of the basement membrane itself and that the NC1-collagen I interaction may be less important for stabilization of the dermal-epidermal junction.  相似文献   

3.
Abstract: Following a nerve crush, cholesterol from degenerating myelin is retained within the nerve and reutilized for new myelin synthesis during nerve regeneration, apparently via a lipoprotein-mediated process. Because at least some serum components have access to the endoneurium of injured nerve, it has been suggested that serum lipoproteins are also significant contributors of cholesterol to Schwann cells during nerve regeneration. To test this hypothesis, serum cholesterol levels were reduced by >90% with 4-aminopyrazolopyrimidine, followed by measurement of the activity of the key regulatory enzyme in cholesterol synthesis, 3-hydroxy-3-methylglutaryl-CoA reductase. Treatment with 4-aminopyrazolopyrimidine caused a sevenfold increase in 3-hydroxy-3-methylglutaryl-CoA reductase activity in kidney but had no effect on the activity of this enzyme in either intact or regenerating sciatic nerve. These data indicate that serum-derived cholesterol is neither necessary for nor contributes significantly to myelin synthesis in regenerating nerve.  相似文献   

4.
The extracellular matrix (ECM) plays a prominent role in ovarian function by participating in processes such as cell migration, proliferation, growth, and development. Although some of these signaling processes have been characterized in the mouse, the relative quantity and distribution of ECM proteins within developing follicles of the ovary have not been characterized. This study uses immunohistochemistry and real-time PCR to characterize the ECM components type I collagen, type IV collagen, fibronectin, and laminin in the mouse ovary according to follicle stage and cellular compartment. Collagen I was present throughout the ovary, with higher concentrations in the ovarian surface epithelium and follicular compartments. Collagen IV was abundant in the theca cell compartment with low-level expression in the stroma and granulosa cells. The distribution of collagen was consistent throughout follicle maturation. Fibronectin staining in the stroma and theca cell compartment increased throughout follicle development, while staining in the granulosa cell compartment decreased. Heavy staining was also observed in the follicular fluid of antral follicles. Laminin was localized primarily to the theca cell compartment, with a defined ring at the exterior of the follicular granulosa cells marking the basement membrane. Low levels of laminin were also apparent in the stroma and granulosa cell compartment. Taken together, the ECM content of the mouse ovary changes during follicular development and reveals a distinct spatial and temporal pattern. This understanding of ECM composition and distribution can be used in the basic studies of ECM function during follicle development, and could aid in the development of in vitro systems for follicle growth.  相似文献   

5.
6.
In this study, we investigated the expression of various G proteins in whole sciatic nerves, in myelin and nonmyelin fractions from these nerves, and in membranes of immortalized Schwann cells. In myelin, nonmyelin, and Schwann cell membranes we detected two 39-40-kDa pertussis toxin substrates that were resolved on separation on urea-gradient gels. Two cholera toxin substrates with apparent molecular masses of 42 and 47 kDa were present in nerve and brain myelin and in Schwann cell membranes. In these membranes, a third 45-kDa cholera toxin substrate, which displayed the highest labeling, was also present. Immunoblotting with specific antisera allowed the identification of G(o) alpha, Gi1 alpha, Gi2 alpha, Gi3 alpha, Gq/G11 alpha, and the two isoforms of Gs alpha in nerve homogenates, nerve, and brain myelin fractions. In Schwann cell membranes we identified G(o) alpha, Gi2 alpha, Gi3 alpha, and proteins from the Gq family, but no immunoreactivity toward anti-Gi1 alpha antiserum was detected. In these membranes, anti-Gs alpha antibody recognized the three cholera toxin substrates mentioned above, with the 45-kDa band displaying the highest immunoreactivity. Relative to sciatic nerve myelin, the Schwann cell membranes revealed a significantly higher expression of Gi3 alpha and the absence of Gi1 alpha. The different distribution of G proteins among the different nerve compartments might reflect the very specialized function of Schwann cells and myelin within the nerve.  相似文献   

7.
Summary The distribution of laminin-like immunoreactivity in adult normal and denervated cat mandibular tooth pulps was studied by the use of fluorescence microscopy and pre-embedding immunogold electron microscopy. Immunoreactivity to collagen IV was also assessed in order to distinguish basement membranes. In normal pulps, light-microscope laminin-like immunoreactivity was strong along blood vessels and Schwann cell sheaths, and a faint immunoreactivity was seen also in the odontoblast layer. Electron microscopy confirmed the laminin-like immunoreactivity of endothelial and Schwann cell basement membranes at all pulpal levels. In the odontoblast layer and the predentine, nerve-like structures lacking basement membranes but possessing strong membrane laminin-like immunoreactivity were encountered. In addition, a clear-cut laminin-like immunoreactivity of plasma membranes of the somata and processes of odontoblasts was seen. Observations on denervated pulps as well as pulps in which nerve regeneration had taken place did not reveal any changes in the pattern of laminin-immunoreactivity in basement membranes or odontoblasts. Distribution of collagen IV-like immunoreactivity was very similar to laminin-like immunoreactivity in basement membranes of blood vessels and Schwann cells, and appeared unaffected by denervation. The odontoblasts and nerve-like profiles in the odontoblast layer were devoid of collagen IV-like immunoreactivity. We propose that odontoblast-associated laminin could be of significance as guidance for regenerating terminal pulpal nerve fibers to appropriate targets.  相似文献   

8.
Abstract: A culture of peripheral nerve cells, very rich in Schwann cells, was developed from sciatic nerve. In both normal and Trembler, typical spindle-shaped cells were seen; most of the cells were surrounded by basement membrane-like material (predominantly in-between adjacent cells). In Trembler cells, cultivated in the presence of labelled acetate, the fatty acids were slightly altered; phosphatidylcholine was slightly reduced and phosphatidyl-ethanolamine increased. Sulfatides were increased four times.  相似文献   

9.
Rat sciatic nerve segments were incubated in five different media. Disappearance of neurofilament (NF) triplet proteins (200K, 160K, and 68K MW) occurred in medium containing Ca2+ and was inhibited by the addition of E-64-c or leupeptin. Therefore, the presence in the peripheral nerve of an enzyme whose properties are similar to those of Ca2+-activated neutral protease (CANP) is suggested. The extraction of crude CANP from rat sciatic nerve was performed. CANP activity was completely recovered (0.129 ± 0.008 U/g) in the precipitate salted out by the addition of 0 to 50% saturated ammonium sulfate to the soluble fraction of the peripheral nerve (crude CANP). Properties of the crude CANP were examined using NF as a substrate and were found to be similar to those of the CANP extracted from skeletal muscle. Identification of the crude CANP with the CANP extracted from rat skeletal muscle was performed using the immunoreplica method. Bands corresponding to 73K were detected in both CANPs.  相似文献   

10.
We have previously reported that the intrinsic ability of motor axons to sprout can vary considerably from nerve to nerve with an inverse correlation to axonal length. In this study we asked whether this variation might be associated with differences in one axonal component, neurofilaments, near the site of outgrowth. The phosphorylation of epitopes on the heavy subunit of neurofilaments (NF-H) was compared in normal and regenerating axons from long and short nerves in the rat. Quantitative determination of phosphorylation states on NF-H epitopes was made by measuring immunoreactivity to monoclonal antibodies using an enzyme-linked immunosorbent assay system. Our results showed a much higher degree of phosphorylation of epitopes on NF-H in terminal portions of short compared to long axons. There was a significant inverse correlation between phosphorylation of NF-H epitopes and axonal length. In newly formed sprouts NF-H phosphorylation was reduced compared to normal. However, the absolute levels were related to the degree of NF-H phosphorylation in the parent axons. The ability to phosphorylate axonal proteins near the site of outgrowth may correlate with the potential for plastic changes in the axon such as sprouting.  相似文献   

11.
Abstract: Following nerve crush, cholesterol from degenerating myelin is conserved and reutilized for new myelin synthesis during nerve regeneration. The possibility that other myelin lipids are salvaged and reutilized has not been investigated previously. We examined the fate of myelin phospholipids and their fatty acyl moieties following nerve crush by electron microscopic autoradiography of myelin lipids prelabeled with [3H]oleate or [2-3H]-glycerol. Both precursors were incorporated predominantly (>90%) into phospholipids; >85% of the [3H]oleate was incorporated as oleate, with the remainder in longer-chain fatty acids. Before nerve crush, both labels were restricted to myelin sheaths. Following nerve crush and subsequent regeneration, over half the label from [3H]oleate, but little from [2-3H]glycerol, remained in nerve. The oleate label was present as fatty acyl moieties in phospholipids and was localized to newly formed myelin sheaths. Among the extracellular soluble lipids within the degenerating nerve, the bulk of the labeled phospholipids floated at the same density as lipoprotein particles. These data indicate that myelin phospholipids are completely hydrolyzed during nerve degeneration, that at least half the resultant free fatty acids are salvaged and reutilized for new myelin synthesis, and that these salvaged fatty acids are transported by a lipoprotein-mediated mechanism similar to that functioning in cholesterol reutilization.  相似文献   

12.
目的:在大肠杆菌中表达经密码子优化的人乳头瘤病毒6型(HPV6)L1的融合蛋白。方法:PCR方法扩增HPV6 L1,基因,测序及序列比对后,对基因进行密码子优化并合成优化后的基因HPV6mLI,将其克隆入原核表达载体pGEX4T-1,IPTG诱导融合蛋白在大肠杆菌BL21(DE3)中表达,SDS-PAGE鉴定表达产物。结果:酶切和测序结果证实HPV6 mL1基因的原核表达载体构建正确;以1mmol/L IPTG于37℃诱导4h,蛋白以包涵体形式表达;表达产物的相对分子质量与预期值一致,为80000。结论:获得大肠杆菌表达的HPV6L1蛋白,为其结构功能研究和疫苗研发提供了基础。  相似文献   

13.
探讨自然光制下正常成年人外周血淋巴细胞钟基因Clock和Bmal1的昼夜节律性表达。用实时定量RT-PCR方法,测定不同昼夜时点(ZT)受试者外周血淋巴细胞总RNA中核心钟基因Clock和Bmal1的mRNA表达量,通过余弦法和Clock Lab软件获取节律参数,并经振幅检验分析是否存在昼夜节律。结果发现正常成年人外周血淋巴细胞钟基因Clock和Bmal1的mRNA表达呈昼夜节律性振荡(P0.05),Clock的峰时和谷时分别位于ZT13和ZT1,Bmal1的峰时和谷时分别位于ZT12和ZT24;两个基因在所检测的各个昼夜时点中表达水平均有明显差异(P0.05),Bmal1的表达水平较Clock降低;二者表达的峰值相位、振幅、峰时和谷时相一致(P0.05),但Bmal1转录的中值水平以及峰时mRNA水平和谷时mRNA水平降低(P0.05)。提示正常成年人外周血淋巴细胞钟基因Clock和Bmal1的表达存在同步化的昼夜节律性转录特征。  相似文献   

14.
1. The responses of periphery (PNS) and central nervous systems (CNS) towards nerve injury are different: while injured mammalian periphery nerons can successfully undergo regeneration, axons in the central nervous system are usually not able to regenerate.2. In the present study, the genes which were differentially expressed in the PNS and CNS following nerve injury were identified and compared by microarray profiling techniques.3. Sciatic nerve crush and hemisection of the spinal cord of adult mice were used as the models for nerve injury in PNS and CNS respectively.4. It was found that of all the genes examined, 14% (80/588) showed changes in expression following either PNS or CNS injury, and only 3% (18/588) showed changes in both types of injuries.5. Among all the differentially expressed genes, only 8% (6/80) exhibited similar changes in gene expression (either up- or down-regulation) following injury in both PNS and CNS nerve injuries.6. Our results indicated that microarray expression profiling is an efficient and useful method to identify genes that are involved in the regeneration process following nerve injuries, and several genes which are differentially expressed in the PNS and/or CNS following nerve injuries were identified in the present study.  相似文献   

15.
S phase kinase-associated protein 2 (Skp2), an F-box protein, is required for the ubiquitination and consequent degradation of p27kip1. Previous reports have showed that p27kip1 played important roles in cell cycle regulation and neurogenesis in the developing central nervous system. But the distribution and function of p27kip1 and Skp2 in nervous system lesion and regeneration remains unclear. In this study, we observed that they were expressed mainly in both Schwann cells and axons in adult rat sciatic nerve. Sciatic nerve crush and transection resulted in a significant up-regulation of Skp2 and a down-regulation of p27kip1. By immunochemistry, we found that in the distal stumps of transected nerve from the end to the edge, the appearance of Skp2 in the edge is coincided with the decrease in p27kip1 levels. Changes of them were inversely correlated. Results obtained by coimmunoprecipitation and double labeling further showed their interaction in the regenerating process. Thus, these results indicate that p27kip1 and Skp2 likely play an important role in peripheral nerve injury and regeneration. Ai-Guo Shen and Shu-Xian Shi contributed equally to this work.  相似文献   

16.
We characterized β1 integrin subunit expression on three different cultures of benign human nevomelanocytes (NMC) and on four different cell cultures of human dysplastic nevus (DN) cells by flow cytometry analysis and examined their role in mediating cell spreading and migration on collagen type IV (CN IV) and laminin (LN) coated substrates by using a quantitative video image analysis system. The seven human NMC and DNC cultures expressed heterogeneous levels of β1, α2, α3 and α6 integrin subunits. Image analysis showed that a significant increase (P<0.001) in cell spreading and migration of the DN cells was induced on increasing coating concentrations of CN IV and LN. However, the NMC did not show an increase in cell spreading or migration on these substrates when compared to the substrates coated with denatured BSA only. The CN IV-induced cell spreading of the DN cells was significantly inhibited by anti-β1 mAb (AIIB2), anti-α2 mAb (P1E6), or anti-α3 mAb (P1B5), but not by mAb against α6 integrin subunit (GoH3). The DN cell spreading on LN was not significantly inhibited by these mAbs. In contrast, the migration of the DN on CN IV and LN was significantly inhibited by anti-β1 mAb, anti-α2 mAb, anti-α3 mAb and anti-α6 mAb. These data suggest that the α2 and α3 subunit are important for cell spreading of the DN on CN IV, although they are less important in cell spreading on the extracellular matrix component LN. The α2, α3 and α6 integrin subunits are important for the migration of DN cells on both CN IV and LN.  相似文献   

17.
We determined whether human peripheral blood mononuclear cells (PBMCs) could be used to analyze clock genes by studying their mRNA expressions in human bronchial epithelium (BEAS‐2B) and PBMCs following stimulation by the glucocorticoid homologue dexamethasone (DEX) in vitro. PBMCs were obtained at 10:00 h from two diurnally active (~07:00 to 23:00 h) healthy volunteers and were evaluated for hPer1 mRNA expression following DEX stimulation in vitro using real time‐PCR analysis. DEX stimulation of human BEAS‐2B cells and PBMCs in vitro led to a remarkable increase of hPer1 mRNA. The glucocorticoid rapidly affected the expression of hPer1 mRNA in PBMCs, suggesting that human PBMCs may be a useful surrogate marker for the investigation of drug effects on clock genes.  相似文献   

18.
Sciatic nerve from streptozotocin-induced diabetic rats has previously been shown to incorporate more 32P into phosphatidylinositol-4,5-bisphosphate (PIP2) and the principal myelin proteins than normal nerve. In the present study, labeling of ATP and PIP2 was compared. Using nerve segments, [gamma-32P]ATP specific activity reached a plateau after incubation for 4 h with [32P]orthophosphate, whereas the specific activity of [32P]PIP2 rose much more slowly and was still increasing after 8 h. The rate of disappearance of radioactivity from prelabeled ATP was biphasic, with 75% being lost within 30 min and the remainder declining much more slowly for several hours thereafter. In contrast, no decrease in prelabeled PIP2 radioactivity could be detected for up to 4 h. The kinetics of ATP metabolism were not appreciably different for normal and diabetic nerve. However, after incubation with [32P]orthophosphate for 2 h, the specific activity of PIP2 was 50-120% higher in diabetic nerve. This phenomenon, therefore, cannot be ascribed to altered specific activity of the ATP precursor pool. Greater labeling of PIP2 in 32P-labeled diabetic nerve was present in purified myelin isolated using a simple discontinuous sucrose density gradient, but not in a "nonmyelin" fraction. When nerve homogenate was fractionated on a more complex gradient, three myelin-enriched subfractions were obtained which were heterogeneous as judged by morphological appearance, protein profile, and lipid metabolic activity. The proportion of total lipid radioactivity accounted for by PIP2 was elevated in all the subfractions relative to the homogenate. As compared to myelin subfractions from normal nerve, an increased percentage of 32P in PIP2 was obtained only in the major myelin subfraction from diabetic nerve. The phosphorylation of P0 relative to the other myelin proteins was also enhanced in this subfraction in nerve from diabetic animals.  相似文献   

19.
20.
Ehlers-Danlos syndrome (EDS) type IV results from mutations in the COL3A1 gene, which encodes the constituent chains of type III procollagen. We have identified, in 33 unrelated individuals or families with EDS type IV, mutations that affect splicing, of which 30 are point mutations at splice junctions and 3 are small deletions that remove splice-junction sequences and partial exon sequences. Except for one point mutation at a donor site, which leads to partial intron inclusion, and a single base-pair substitution at an acceptor site, which gives rise to inclusion of the complete upstream intron into the mature mRNA, all mutations result in deletion of a single exon as the only splice alteration. Of the exon-skipping mutations that are due to single base substitutions, which we have identified in 28 separate individuals, only two affect the splice-acceptor site. The underrepresentation of splice acceptor-site mutations suggests that the favored consequence of 3' mutations is the use of an alternative acceptor site that creates a null allele with a premature-termination codon. The phenotypes of those mutations may differ, with respect to either their severity or their symptomatic range, from the usual presentation of EDS type IV and thus have been excluded from analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号